/* * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ namespace com.google.zxing.oned { using System; using System.Text; using com.google.zxing.common; /** *

Encapsulates functionality and implementation that is common to UPC and EAN families * of one-dimensional barcodes.

* * @author dswitkin@google.com (Daniel Switkin) * @author Sean Owen * @author alasdair@google.com (Alasdair Mackintosh) */ public abstract class AbstractUPCEANReader : AbstractOneDReader,UPCEANReader { private static int MAX_AVG_VARIANCE = (int) (PATTERN_MATCH_RESULT_SCALE_FACTOR * 0.42f); private static int MAX_INDIVIDUAL_VARIANCE = (int) (PATTERN_MATCH_RESULT_SCALE_FACTOR * 0.7f); /** * Start/end guard pattern. */ private static int[] START_END_PATTERN = {1, 1, 1,}; /** * Pattern marking the middle of a UPC/EAN pattern, separating the two halves. */ public static int[] MIDDLE_PATTERN = {1, 1, 1, 1, 1}; /** * "Odd", or "L" patterns used to encode UPC/EAN digits. */ public static int[][] L_PATTERNS = new int[][]{ new int[]{3, 2, 1, 1}, // 0 new int[]{2, 2, 2, 1}, // 1 new int[]{2, 1, 2, 2}, // 2 new int[]{1, 4, 1, 1}, // 3 new int[]{1, 1, 3, 2}, // 4 new int[]{1, 2, 3, 1}, // 5 new int[]{1, 1, 1, 4}, // 6 new int[]{1, 3, 1, 2}, // 7 new int[]{1, 2, 1, 3}, // 8 new int[]{3, 1, 1, 2} // 9 }; /** * As above but also including the "even", or "G" patterns used to encode UPC/EAN digits. */ public static int[][] L_AND_G_PATTERNS=new int[20][]; //static { // L_AND_G_PATTERNS = new int[20][]; // for (int i = 0; i < 10; i++) { // L_AND_G_PATTERNS[i] = L_PATTERNS[i]; // } // for (int i = 10; i < 20; i++) { // int[] widths = L_PATTERNS[i - 10]; // int[] reversedWidths = new int[widths.length]; // for (int j = 0; j < widths.length; j++) { // reversedWidths[j] = widths[widths.length - j - 1]; // } // L_AND_G_PATTERNS[i] = reversedWidths; // } //} private StringBuilder decodeRowStringBuffer; protected AbstractUPCEANReader() { for (int i = 0; i < 10; i++) { L_AND_G_PATTERNS[i] = L_PATTERNS[i]; } for (int i = 10; i < 20; i++) { int[] widths = L_PATTERNS[i - 10]; int[] reversedWidths = new int[widths.Length]; for (int j = 0; j < widths.Length; j++) { reversedWidths[j] = widths[widths.Length - j - 1]; } L_AND_G_PATTERNS[i] = reversedWidths; } decodeRowStringBuffer = new StringBuilder(20); } public static int[] findStartGuardPattern(BitArray row) { bool foundStart = false; int[] startRange = null; int nextStart = 0; while (!foundStart) { startRange = findGuardPattern(row, nextStart, false, START_END_PATTERN); int start = startRange[0]; nextStart = startRange[1]; // Make sure there is a quiet zone at least as big as the start pattern before the barcode. If // this check would run off the left edge of the image, do not accept this barcode, as it is // very likely to be a false positive. int quietStart = start - (nextStart - start); if (quietStart >= 0) { foundStart = row.isRange(quietStart, start, false); } } return startRange; } public override Result decodeRow(int rowNumber, BitArray row, System.Collections.Hashtable hints) { return decodeRow(rowNumber, row, findStartGuardPattern(row)); } public Result decodeRow(int rowNumber, BitArray row, int[] startGuardRange) { StringBuilder result = decodeRowStringBuffer; result.Length = 0; int endStart = decodeMiddle(row, startGuardRange, result); int[] endRange = decodeEnd(row, endStart); // Make sure there is a quiet zone at least as big as the end pattern after the barcode. The // spec might want more whitespace, but in practice this is the maximum we can count on. int end = endRange[1]; int quietEnd = end + (end - endRange[0]); if (quietEnd >= row.getSize() || !row.isRange(end, quietEnd, false)) { throw new ReaderException(); } String resultString = result.ToString(); if (!checkChecksum(resultString)) { throw new ReaderException(); } float left = (float) (startGuardRange[1] + startGuardRange[0]) / 2.0f; float right = (float) (endRange[1] + endRange[0]) / 2.0f; return new Result(resultString, null, // no natural byte representation for these barcodes new ResultPoint[]{ new GenericResultPoint(left, (float) rowNumber), new GenericResultPoint(right, (float) rowNumber)}, getBarcodeFormat()); } public abstract BarcodeFormat getBarcodeFormat(); /** * @return {@link #checkStandardUPCEANChecksum(String)} */ public bool checkChecksum(String s) { return checkStandardUPCEANChecksum(s); } /** * Computes the UPC/EAN checksum on a string of digits, and reports * whether the checksum is correct or not. * * @param s string of digits to check * @return true iff string of digits passes the UPC/EAN checksum algorithm * @throws ReaderException if the string does not contain only digits */ public static bool checkStandardUPCEANChecksum(String s) { int length = s.Length; if (length == 0) { return false; } int sum = 0; for (int i = length - 2; i >= 0; i -= 2) { int digit = (int) s[i] - (int) '0'; if (digit < 0 || digit > 9) { throw new ReaderException(); } sum += digit; } sum *= 3; for (int i = length - 1; i >= 0; i -= 2) { int digit = (int) s[i] - (int) '0'; if (digit < 0 || digit > 9) { throw new ReaderException(); } sum += digit; } return sum % 10 == 0; } /** * Subclasses override this to decode the portion of a barcode between the start and end guard patterns. * * @param row row of black/white values to search * @param startRange start/end offset of start guard pattern * @param resultString {@link StringBuffer} to append decoded chars to * @return horizontal offset of first pixel after the "middle" that was decoded * @throws ReaderException if decoding could not complete successfully */ protected abstract int decodeMiddle(BitArray row, int[] startRange, StringBuilder resultString); int[] decodeEnd(BitArray row, int endStart) { return findGuardPattern(row, endStart, false, START_END_PATTERN); } /** * @param row row of black/white values to search * @param rowOffset position to start search * @param whiteFirst if true, indicates that the pattern specifies white/black/white/... * pixel counts, otherwise, it is interpreted as black/white/black/... * @param pattern pattern of counts of number of black and white pixels that are being * searched for as a pattern * @return start/end horizontal offset of guard pattern, as an array of two ints * @throws ReaderException if pattern is not found */ public static int[] findGuardPattern(BitArray row, int rowOffset, bool whiteFirst, int[] pattern) { int patternLength = pattern.Length; int[] counters = new int[patternLength]; int width = row.getSize(); bool isWhite = false; while (rowOffset < width) { isWhite = !row.get(rowOffset); if (whiteFirst == isWhite) { break; } rowOffset++; } int counterPosition = 0; int patternStart = rowOffset; for (int x = rowOffset; x < width; x++) { bool pixel = row.get(x); if ((!pixel && isWhite) || (pixel && !isWhite)) { counters[counterPosition]++; } else { if (counterPosition == patternLength - 1) { if (patternMatchVariance(counters, pattern, MAX_INDIVIDUAL_VARIANCE) < MAX_AVG_VARIANCE) { return new int[]{patternStart, x}; } patternStart += counters[0] + counters[1]; for (int y = 2; y < patternLength; y++) { counters[y - 2] = counters[y]; } counters[patternLength - 2] = 0; counters[patternLength - 1] = 0; counterPosition--; } else { counterPosition++; } counters[counterPosition] = 1; isWhite = !isWhite; } } throw new ReaderException(); } /** * Attempts to decode a single UPC/EAN-encoded digit. * * @param row row of black/white values to decode * @param counters the counts of runs of observed black/white/black/... values * @param rowOffset horizontal offset to start decoding from * @param patterns the set of patterns to use to decode -- sometimes different encodings * for the digits 0-9 are used, and this indicates the encodings for 0 to 9 that should * be used * @return horizontal offset of first pixel beyond the decoded digit * @throws ReaderException if digit cannot be decoded */ public static int decodeDigit(BitArray row, int[] counters, int rowOffset, int[][] patterns) { recordPattern(row, rowOffset, counters); int bestVariance = MAX_AVG_VARIANCE; // worst variance we'll accept int bestMatch = -1; int max = patterns.Length; for (int i = 0; i < max; i++) { int[] pattern = patterns[i]; int variance = patternMatchVariance(counters, pattern, MAX_INDIVIDUAL_VARIANCE); if (variance < bestVariance) { bestVariance = variance; bestMatch = i; } } if (bestMatch >= 0) { return bestMatch; } else { throw new ReaderException(); } } } }