/* * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ namespace com.google.zxing.oned { /** *

Implements decoding of the EAN-13 format.

* * @author dswitkin@google.com (Daniel Switkin) * @author Sean Owen * @author alasdair@google.com (Alasdair Mackintosh) */ using System.Text; using com.google.zxing.common; public sealed class ITFReader : AbstractOneDReader { private static int MAX_AVG_VARIANCE = (int) (PATTERN_MATCH_RESULT_SCALE_FACTOR * 0.42f); private static int MAX_INDIVIDUAL_VARIANCE = (int) (PATTERN_MATCH_RESULT_SCALE_FACTOR * 0.8f); private static int W = 3; // Pixel width of a wide line private static int N = 1; // Pixed width of a narrow line // Stores the actual narrow line width of the image being decoded. private int narrowLineWidth = -1; /** * Start/end guard pattern. * * Note: The end pattern is reversed because the row is reversed before * searching for the END_PATTERN */ private static int[] START_PATTERN = {N, N, N, N}; private static int[] END_PATTERN_REVERSED = {N, N, W}; /** * Patterns of Wide / Narrow lines to indicate each digit */ private static int[][] PATTERNS = new int[][]{ new int[]{N, N, W, W, N}, // 0 new int[]{W, N, N, N, W}, // 1 new int[]{N, W, N, N, W}, // 2 new int[]{W, W, N, N, N}, // 3 new int[]{N, N, W, N, W}, // 4 new int[]{W, N, W, N, N}, // 5 new int[]{N, W, W, N, N}, // 6 new int[]{N, N, N, W, W}, // 7 new int[]{W, N, N, W, N}, // 8 new int[]{N, W, N, W, N} // 9 }; public override Result decodeRow(int rowNumber, BitArray row, System.Collections.Hashtable hints) { StringBuilder result = new StringBuilder(20); // Find out where the Middle section (payload) starts & ends int[] startRange = decodeStart(row); int[] endRange = decodeEnd(row); decodeMiddle(row, startRange[1], endRange[0], result); string resultString = result.ToString(); // To avoid false positives with 2D barcodes (and other patterns), make // an assumption that the decoded string must be 6, 10 or 14 digits. int length = resultString.Length; if (length != 6 && length != 10 && length != 14) { throw new ReaderException(); } return new Result( resultString, null, // no natural byte representation for these barcodes new ResultPoint[] { new GenericResultPoint(startRange[1], (float) rowNumber), new GenericResultPoint(startRange[0], (float) rowNumber)}, BarcodeFormat.ITF); } /** * @param row row of black/white values to search * @param payloadStart offset of start pattern * @param resultString {@link StringBuilder} to Append decoded chars to * @throws ReaderException if decoding could not complete successfully */ static void decodeMiddle(BitArray row, int payloadStart, int payloadEnd, StringBuilder resultString) { // Digits are interleaved in pairs - 5 black lines for one digit, and the // 5 // interleaved white lines for the second digit. // Therefore, need to scan 10 lines and then // split these into two arrays int[] counterDigitPair = new int[10]; int[] counterBlack = new int[5]; int[] counterWhite = new int[5]; while (payloadStart < payloadEnd) { // Get 10 runs of black/white. recordPattern(row, payloadStart, counterDigitPair); // Split them into each array for (int k = 0; k < 5; k++) { int twoK = k << 1; counterBlack[k] = counterDigitPair[twoK]; counterWhite[k] = counterDigitPair[twoK + 1]; } int bestMatch = decodeDigit(counterBlack); resultString.Append((char) ('0' + bestMatch)); bestMatch = decodeDigit(counterWhite); resultString.Append((char) ('0' + bestMatch)); for (int i = 0; i < counterDigitPair.Length; i++) { payloadStart += counterDigitPair[i]; } } } /** * Identify where the start of the middle / payload section starts. * * @param row row of black/white values to search * @return Array, containing index of start of 'start block' and end of * 'start block' * @throws ReaderException */ int[] decodeStart(BitArray row) { int endStart = skipWhiteSpace(row); int[] startPattern = findGuardPattern(row, endStart, START_PATTERN); // Determine the width of a narrow line in pixels. We can do this by // getting the width of the start pattern and dividing by 4 because its // made up of 4 narrow lines. this.narrowLineWidth = (startPattern[1] - startPattern[0]) >> 2; validateQuietZone(row, startPattern[0]); return startPattern; } /** * The start & end patterns must be pre/post fixed by a quiet zone. This * zone must be at least 10 times the width of a narrow line. Scan back until * we either get to the start of the barcode or match the necessary number of * quiet zone pixels. * * Note: Its assumed the row is reversed when using this method to find * quiet zone after the end pattern. * * ref: http://www.barcode-1.net/i25code.html * * @param row bit array representing the scanned barcode. * @param startPattern index into row of the start or end pattern. * @throws ReaderException if the quiet zone cannot be found, a ReaderException is thrown. */ private void validateQuietZone(BitArray row, int startPattern) { int quietCount = this.narrowLineWidth * 10; // expect to find this many pixels of quiet zone for (int i = startPattern - 1; quietCount > 0 && i >= 0; i--) { if (row.get(i)) { break; } quietCount--; } if (quietCount != 0) { // Unable to find the necessary number of quiet zone pixels. throw new ReaderException(); } } /** * Skip all whitespace until we get to the first black line. * * @param row row of black/white values to search * @return index of the first black line. * @throws ReaderException Throws exception if no black lines are found in the row */ private int skipWhiteSpace(BitArray row) { int width = row.getSize(); int endStart = 0; while (endStart < width) { if (row.get(endStart)) { break; } endStart++; } if (endStart == width) { throw new ReaderException(); } return endStart; } /** * Identify where the end of the middle / payload section ends. * * @param row row of black/white values to search * @return Array, containing index of start of 'end block' and end of 'end * block' * @throws ReaderException */ int[] decodeEnd(BitArray row) { // For convenience, reverse the row and then // search from 'the start' for the end block row.reverse(); int endStart = skipWhiteSpace(row); int[] endPattern; try { endPattern = findGuardPattern(row, endStart, END_PATTERN_REVERSED); } catch (ReaderException e) { // Put our row of data back the right way before throwing row.reverse(); throw e; } // The start & end patterns must be pre/post fixed by a quiet zone. This // zone must be at least 10 times the width of a narrow line. // ref: http://www.barcode-1.net/i25code.html validateQuietZone(row, endPattern[0]); // Now recalc the indicies of where the 'endblock' starts & stops to // accomodate // the reversed nature of the search int temp = endPattern[0]; endPattern[0] = row.getSize() - endPattern[1]; endPattern[1] = row.getSize() - temp; // Put the row back the righ way. row.reverse(); return endPattern; } /** * @param row row of black/white values to search * @param rowOffset position to start search * @param pattern pattern of counts of number of black and white pixels that are * being searched for as a pattern * @return start/end horizontal offset of guard pattern, as an array of two * ints * @throws ReaderException if pattern is not found */ int[] findGuardPattern(BitArray row, int rowOffset, int[] pattern) { // TODO: This is very similar to implementation in AbstractUPCEANReader. Consider if they can be merged to // a single method. int patternLength = pattern.Length; int[] counters = new int[patternLength]; int width = row.getSize(); bool isWhite = false; int counterPosition = 0; int patternStart = rowOffset; for (int x = rowOffset; x < width; x++) { bool pixel = row.get(x); if ((!pixel && isWhite) || (pixel && !isWhite)) { counters[counterPosition]++; } else { if (counterPosition == patternLength - 1) { if (patternMatchVariance(counters, pattern, MAX_INDIVIDUAL_VARIANCE) < MAX_AVG_VARIANCE) { return new int[]{patternStart, x}; } patternStart += counters[0] + counters[1]; for (int y = 2; y < patternLength; y++) { counters[y - 2] = counters[y]; } counters[patternLength - 2] = 0; counters[patternLength - 1] = 0; counterPosition--; } else { counterPosition++; } counters[counterPosition] = 1; isWhite = !isWhite; } } throw new ReaderException(); } /** * Attempts to decode a sequence of ITF black/white lines into single * digit. * * @param counters the counts of runs of observed black/white/black/... values * @return The decoded digit * @throws ReaderException if digit cannot be decoded */ private static int decodeDigit(int[] counters) { int bestVariance = MAX_AVG_VARIANCE; // worst variance we'll accept int bestMatch = -1; int max = PATTERNS.Length; for (int i = 0; i < max; i++) { int[] pattern = PATTERNS[i]; int variance = patternMatchVariance(counters, pattern, MAX_INDIVIDUAL_VARIANCE); if (variance < bestVariance) { bestVariance = variance; bestMatch = i; } } if (bestMatch >= 0) { return bestMatch; } else { throw new ReaderException(); } } } }