/* * Copyright 2007 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using com.google.zxing; using com.google.zxing.common; namespace com.google.zxing.qrcode.detector { using Version = com.google.zxing.qrcode.decoder.Version; public sealed class Detector { private MonochromeBitmapSource image; public Detector(MonochromeBitmapSource image) { this.image = image; } /** *

Detects a QR Code in an image, simply.

* * @return {@link DetectorResult} encapsulating results of detecting a QR Code * @throws ReaderException if no QR Code can be found */ public DetectorResult detect(){ try{ return detect(null); }catch(Exception e){ throw new ReaderException(e.Message); } } /** *

Detects a QR Code in an image, simply.

* * @param hints optional hints to detector * @return {@link DetectorResult} encapsulating results of detecting a QR Code * @throws ReaderException if no QR Code can be found */ public DetectorResult detect(System.Collections.Hashtable hints) { MonochromeBitmapSource image = this.image; if (!BlackPointEstimationMethod.TWO_D_SAMPLING.Equals(image.getLastEstimationMethod())) { image.estimateBlackPoint(BlackPointEstimationMethod.TWO_D_SAMPLING, 0); } FinderPatternFinder finder = new FinderPatternFinder(image); FinderPatternInfo info = finder.find(hints); FinderPattern topLeft = info.getTopLeft(); FinderPattern topRight = info.getTopRight(); FinderPattern bottomLeft = info.getBottomLeft(); float moduleSize = calculateModuleSize(topLeft, topRight, bottomLeft); if (moduleSize < 1.0f) { throw new ReaderException(); } int dimension = computeDimension(topLeft, topRight, bottomLeft, moduleSize); Version provisionalVersion = Version.getProvisionalVersionForDimension(dimension); int modulesBetweenFPCenters = provisionalVersion.getDimensionForVersion() - 7; AlignmentPattern alignmentPattern = null; // Anything above version 1 has an alignment pattern if (provisionalVersion.getAlignmentPatternCenters().Length > 0) { // Guess where a "bottom right" finder pattern would have been float bottomRightX = topRight.getX() - topLeft.getX() + bottomLeft.getX(); float bottomRightY = topRight.getY() - topLeft.getY() + bottomLeft.getY(); // Estimate that alignment pattern is closer by 3 modules // from "bottom right" to known top left location float correctionToTopLeft = 1.0f - 3.0f / (float) modulesBetweenFPCenters; int estAlignmentX = (int) (topLeft.getX() + correctionToTopLeft * (bottomRightX - topLeft.getX())); int estAlignmentY = (int) (topLeft.getY() + correctionToTopLeft * (bottomRightY - topLeft.getY())); // Kind of arbitrary -- expand search radius before giving up for (int i = 4; i <= 16; i <<= 1) { try { alignmentPattern = findAlignmentInRegion(moduleSize, estAlignmentX, estAlignmentY, (float) i); break; } catch (ReaderException re) { // try next round } } if (alignmentPattern == null) { throw new ReaderException(); } } BitMatrix bits = sampleGrid(image, topLeft, topRight, bottomLeft, alignmentPattern, dimension); ResultPoint[] points; if (alignmentPattern == null) { points = new ResultPoint[]{bottomLeft, topLeft, topRight}; } else { points = new ResultPoint[]{bottomLeft, topLeft, topRight, alignmentPattern}; } return new DetectorResult(bits, points); } private static BitMatrix sampleGrid(MonochromeBitmapSource image, ResultPoint topLeft, ResultPoint topRight, ResultPoint bottomLeft, ResultPoint alignmentPattern, int dimension) { float dimMinusThree = (float) dimension - 3.5f; float bottomRightX; float bottomRightY; float sourceBottomRightX; float sourceBottomRightY; if (alignmentPattern != null) { bottomRightX = alignmentPattern.getX(); bottomRightY = alignmentPattern.getY(); sourceBottomRightX = sourceBottomRightY = dimMinusThree - 3.0f; } else { // Don't have an alignment pattern, just make up the bottom-right point bottomRightX = (topRight.getX() - topLeft.getX()) + bottomLeft.getX(); bottomRightY = (topRight.getY() - topLeft.getY()) + bottomLeft.getY(); sourceBottomRightX = sourceBottomRightY = dimMinusThree; } GridSampler sampler = GridSampler.Instance; return sampler.sampleGrid( image, dimension, 3.5f, 3.5f, dimMinusThree, 3.5f, sourceBottomRightX, sourceBottomRightY, 3.5f, dimMinusThree, topLeft.getX(), topLeft.getY(), topRight.getX(), topRight.getY(), bottomRightX, bottomRightY, bottomLeft.getX(), bottomLeft.getY()); } /** *

Computes the dimension (number of modules on a size) of the QR Code based on the position * of the finder patterns and estimated module size.

*/ private static int computeDimension(ResultPoint topLeft, ResultPoint topRight, ResultPoint bottomLeft, float moduleSize) { int tltrCentersDimension = round(GenericResultPoint.distance(topLeft, topRight) / moduleSize); int tlblCentersDimension = round(GenericResultPoint.distance(topLeft, bottomLeft) / moduleSize); int dimension = ((tltrCentersDimension + tlblCentersDimension) >> 1) + 7; switch (dimension & 0x03) { // mod 4 case 0: dimension++; break; // 1? do nothing case 2: dimension--; break; case 3: throw new ReaderException(); } return dimension; } /** *

Computes an average estimated module size based on estimated derived from the positions * of the three finder patterns.

*/ private float calculateModuleSize(ResultPoint topLeft, ResultPoint topRight, ResultPoint bottomLeft) { // Take the average return (calculateModuleSizeOneWay(topLeft, topRight) + calculateModuleSizeOneWay(topLeft, bottomLeft)) / 2.0f; } /** *

Estimates module size based on two finder patterns -- it uses * {@link #sizeOfBlackWhiteBlackRunBothWays(int, int, int, int)} to figure the * width of each, measuring along the axis between their centers.

*/ private float calculateModuleSizeOneWay(ResultPoint pattern, ResultPoint otherPattern) { float moduleSizeEst1 = sizeOfBlackWhiteBlackRunBothWays((int) pattern.getX(), (int) pattern.getY(), (int) otherPattern.getX(), (int) otherPattern.getY()); float moduleSizeEst2 = sizeOfBlackWhiteBlackRunBothWays((int) otherPattern.getX(), (int) otherPattern.getY(), (int) pattern.getX(), (int) pattern.getY()); if (Single.IsNaN(moduleSizeEst1)) { return moduleSizeEst2; } if (Single.IsNaN(moduleSizeEst2)) { return moduleSizeEst1; } // Average them, and divide by 7 since we've counted the width of 3 black modules, // and 1 white and 1 black module on either side. Ergo, divide sum by 14. return (moduleSizeEst1 + moduleSizeEst2) / 14.0f; } /** * See {@link #sizeOfBlackWhiteBlackRun(int, int, int, int)}; computes the total width of * a finder pattern by looking for a black-white-black run from the center in the direction * of another point (another finder pattern center), and in the opposite direction too.

*/ private float sizeOfBlackWhiteBlackRunBothWays(int fromX, int fromY, int toX, int toY) { float result = sizeOfBlackWhiteBlackRun(fromX, fromY, toX, toY); // Now count other way -- don't run off image though of course int otherToX = fromX - (toX - fromX); if (otherToX < 0) { // "to" should the be the first value not included, so, the first value off // the edge is -1 otherToX = -1; } else if (otherToX >= image.getWidth()) { otherToX = image.getWidth(); } int otherToY = fromY - (toY - fromY); if (otherToY < 0) { otherToY = -1; } else if (otherToY >= image.getHeight()) { otherToY = image.getHeight(); } result += sizeOfBlackWhiteBlackRun(fromX, fromY, otherToX, otherToY); return result - 1.0f; // -1 because we counted the middle pixel twice } /** *

This method traces a line from a point in the image, in the direction towards another point. * It begins in a black region, and keeps going until it finds white, then black, then white again. * It reports the distance from the start to this point.

* *

This is used when figuring out how wide a finder pattern is, when the finder pattern * may be skewed or rotated.

*/ private float sizeOfBlackWhiteBlackRun(int fromX, int fromY, int toX, int toY) { // Mild variant of Bresenham's algorithm; // see http://en.wikipedia.org/wiki/Bresenham's_line_algorithm bool steep = Math.Abs(toY - fromY) > Math.Abs(toX - fromX); if (steep) { int temp = fromX; fromX = fromY; fromY = temp; temp = toX; toX = toY; toY = temp; } int dx = Math.Abs(toX - fromX); int dy = Math.Abs(toY - fromY); int error = -dx >> 1; int ystep = fromY < toY ? 1 : -1; int xstep = fromX < toX ? 1 : -1; int state = 0; // In black pixels, looking for white, first or second time int diffX =0; int diffY =0; for (int x = fromX, y = fromY; x != toX; x += xstep) { int realX = steep ? y : x; int realY = steep ? x : y; if (state == 1) { // In white pixels, looking for black if (image.isBlack(realX, realY)) { state++; } } else { if (!image.isBlack(realX, realY)) { state++; } } if (state == 3) { // Found black, white, black, and stumbled back onto white; done diffX = x - fromX; diffY = y - fromY; return (float) Math.Sqrt((double) (diffX * diffX + diffY * diffY)); } error += dy; if (error > 0) { y += ystep; error -= dx; } } diffX = toX - fromX; diffY = toY - fromY; return (float) Math.Sqrt((double) (diffX * diffX + diffY * diffY)); } /** *

Attempts to locate an alignment pattern in a limited region of the image, which is * guessed to contain it. This method uses {@link AlignmentPattern}.

* * @param overallEstModuleSize estimated module size so far * @param estAlignmentX x coordinate of center of area probably containing alignment pattern * @param estAlignmentY y coordinate of above * @param allowanceFactor number of pixels in all directons to search from the center * @return {@link AlignmentPattern} if found, or null otherwise * @throws ReaderException if an unexpected error occurs during detection */ private AlignmentPattern findAlignmentInRegion(float overallEstModuleSize, int estAlignmentX, int estAlignmentY, float allowanceFactor){ // Look for an alignment pattern (3 modules in size) around where it // should be int allowance = (int) (allowanceFactor * overallEstModuleSize); int alignmentAreaLeftX = Math.Max(0, estAlignmentX - allowance); int alignmentAreaRightX = Math.Min(image.getWidth() - 1, estAlignmentX + allowance); if (alignmentAreaRightX - alignmentAreaLeftX < overallEstModuleSize * 3) { throw new ReaderException(); } int alignmentAreaTopY = Math.Max(0, estAlignmentY - allowance); int alignmentAreaBottomY = Math.Min(image.getHeight() - 1, estAlignmentY + allowance); AlignmentPatternFinder alignmentFinder = new AlignmentPatternFinder( image, alignmentAreaLeftX, alignmentAreaTopY, alignmentAreaRightX - alignmentAreaLeftX, alignmentAreaBottomY - alignmentAreaTopY, overallEstModuleSize); return alignmentFinder.find(); } /** * Ends up being a bit faster than Math.round(). This merely rounds its argument to the nearest int, * where x.5 rounds up. */ private static int round(float d) { return (int) (d + 0.5f); } } }