Pull fujitsu into release branch
[powerpc.git] / Documentation / lguest / lguest.c
index 7418f85..f266839 100644 (file)
 #include <zlib.h>
 #include <assert.h>
 #include <sched.h>
-/*L:110 We can ignore the 30 include files we need for this program, but I do
+#include "linux/lguest_launcher.h"
+#include "linux/virtio_config.h"
+#include "linux/virtio_net.h"
+#include "linux/virtio_blk.h"
+#include "linux/virtio_console.h"
+#include "linux/virtio_ring.h"
+#include "asm-x86/bootparam.h"
+/*L:110 We can ignore the 38 include files we need for this program, but I do
  * want to draw attention to the use of kernel-style types.
  *
  * As Linus said, "C is a Spartan language, and so should your naming be."  I
- * like these abbreviations and the header we need uses them, so we define them
- * here.
- */
+ * like these abbreviations, so we define them here.  Note that u64 is always
+ * unsigned long long, which works on all Linux systems: this means that we can
+ * use %llu in printf for any u64. */
 typedef unsigned long long u64;
 typedef uint32_t u32;
 typedef uint16_t u16;
 typedef uint8_t u8;
-#include "linux/lguest_launcher.h"
-#include "linux/pci_ids.h"
-#include "linux/virtio_config.h"
-#include "linux/virtio_net.h"
-#include "linux/virtio_blk.h"
-#include "linux/virtio_console.h"
-#include "linux/virtio_ring.h"
-#include "asm-x86/e820.h"
 /*:*/
 
 #define PAGE_PRESENT 0x7       /* Present, RW, Execute */
@@ -251,23 +250,6 @@ static void *get_pages(unsigned int num)
        return addr;
 }
 
-/* To find out where to start we look for the magic Guest string, which marks
- * the code we see in lguest_asm.S.  This is a hack which we are currently
- * plotting to replace with the normal Linux entry point. */
-static unsigned long entry_point(const void *start, const void *end)
-{
-       const void *p;
-
-       /* The scan gives us the physical starting address.  We boot with
-        * pagetables set up with virtual and physical the same, so that's
-        * OK. */
-       for (p = start; p < end; p++)
-               if (memcmp(p, "GenuineLguest", strlen("GenuineLguest")) == 0)
-                       return to_guest_phys(p + strlen("GenuineLguest"));
-
-       errx(1, "Is this image a genuine lguest?");
-}
-
 /* This routine is used to load the kernel or initrd.  It tries mmap, but if
  * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
  * it falls back to reading the memory in. */
@@ -303,7 +285,6 @@ static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
  * We return the starting address. */
 static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
 {
-       void *start = (void *)-1, *end = NULL;
        Elf32_Phdr phdr[ehdr->e_phnum];
        unsigned int i;
 
@@ -335,93 +316,52 @@ static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
                verbose("Section %i: size %i addr %p\n",
                        i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
 
-               /* We track the first and last address we mapped, so we can
-                * tell entry_point() where to scan. */
-               if (from_guest_phys(phdr[i].p_paddr) < start)
-                       start = from_guest_phys(phdr[i].p_paddr);
-               if (from_guest_phys(phdr[i].p_paddr) + phdr[i].p_filesz > end)
-                       end=from_guest_phys(phdr[i].p_paddr)+phdr[i].p_filesz;
-
                /* We map this section of the file at its physical address. */
                map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
                       phdr[i].p_offset, phdr[i].p_filesz);
        }
 
-       return entry_point(start, end);
-}
-
-/*L:160 Unfortunately the entire ELF image isn't compressed: the segments
- * which need loading are extracted and compressed raw.  This denies us the
- * information we need to make a fully-general loader. */
-static unsigned long unpack_bzimage(int fd)
-{
-       gzFile f;
-       int ret, len = 0;
-       /* A bzImage always gets loaded at physical address 1M.  This is
-        * actually configurable as CONFIG_PHYSICAL_START, but as the comment
-        * there says, "Don't change this unless you know what you are doing".
-        * Indeed. */
-       void *img = from_guest_phys(0x100000);
-
-       /* gzdopen takes our file descriptor (carefully placed at the start of
-        * the GZIP header we found) and returns a gzFile. */
-       f = gzdopen(fd, "rb");
-       /* We read it into memory in 64k chunks until we hit the end. */
-       while ((ret = gzread(f, img + len, 65536)) > 0)
-               len += ret;
-       if (ret < 0)
-               err(1, "reading image from bzImage");
-
-       verbose("Unpacked size %i addr %p\n", len, img);
-
-       return entry_point(img, img + len);
+       /* The entry point is given in the ELF header. */
+       return ehdr->e_entry;
 }
 
 /*L:150 A bzImage, unlike an ELF file, is not meant to be loaded.  You're
- * supposed to jump into it and it will unpack itself.  We can't do that
- * because the Guest can't run the unpacking code, and adding features to
- * lguest kills puppies, so we don't want to.
+ * supposed to jump into it and it will unpack itself.  We used to have to
+ * perform some hairy magic because the unpacking code scared me.
  *
- * The bzImage is formed by putting the decompressing code in front of the
- * compressed kernel code.  So we can simple scan through it looking for the
- * first "gzip" header, and start decompressing from there. */
+ * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
+ * a small patch to jump over the tricky bits in the Guest, so now we just read
+ * the funky header so we know where in the file to load, and away we go! */
 static unsigned long load_bzimage(int fd)
 {
-       unsigned char c;
-       int state = 0;
-
-       /* GZIP header is 0x1F 0x8B <method> <flags>... <compressed-by>. */
-       while (read(fd, &c, 1) == 1) {
-               switch (state) {
-               case 0:
-                       if (c == 0x1F)
-                               state++;
-                       break;
-               case 1:
-                       if (c == 0x8B)
-                               state++;
-                       else
-                               state = 0;
-                       break;
-               case 2 ... 8:
-                       state++;
-                       break;
-               case 9:
-                       /* Seek back to the start of the gzip header. */
-                       lseek(fd, -10, SEEK_CUR);
-                       /* One final check: "compressed under UNIX". */
-                       if (c != 0x03)
-                               state = -1;
-                       else
-                               return unpack_bzimage(fd);
-               }
-       }
-       errx(1, "Could not find kernel in bzImage");
+       struct boot_params boot;
+       int r;
+       /* Modern bzImages get loaded at 1M. */
+       void *p = from_guest_phys(0x100000);
+
+       /* Go back to the start of the file and read the header.  It should be
+        * a Linux boot header (see Documentation/i386/boot.txt) */
+       lseek(fd, 0, SEEK_SET);
+       read(fd, &boot, sizeof(boot));
+
+       /* Inside the setup_hdr, we expect the magic "HdrS" */
+       if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
+               errx(1, "This doesn't look like a bzImage to me");
+
+       /* Skip over the extra sectors of the header. */
+       lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
+
+       /* Now read everything into memory. in nice big chunks. */
+       while ((r = read(fd, p, 65536)) > 0)
+               p += r;
+
+       /* Finally, code32_start tells us where to enter the kernel. */
+       return boot.hdr.code32_start;
 }
 
 /*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
- * come wrapped up in the self-decompressing "bzImage" format.  With some funky
- * coding, we can load those, too. */
+ * come wrapped up in the self-decompressing "bzImage" format.  With a little
+ * work, we can load those, too. */
 static unsigned long load_kernel(int fd)
 {
        Elf32_Ehdr hdr;
@@ -524,6 +464,7 @@ static unsigned long setup_pagetables(unsigned long mem,
         * to know where it is. */
        return to_guest_phys(pgdir);
 }
+/*:*/
 
 /* Simple routine to roll all the commandline arguments together with spaces
  * between them. */
@@ -540,9 +481,9 @@ static void concat(char *dst, char *args[])
        dst[len] = '\0';
 }
 
-/* This is where we actually tell the kernel to initialize the Guest.  We saw
- * the arguments it expects when we looked at initialize() in lguest_user.c:
- * the base of guest "physical" memory, the top physical page to allow, the
+/*L:185 This is where we actually tell the kernel to initialize the Guest.  We
+ * saw the arguments it expects when we looked at initialize() in lguest_user.c:
+ * the base of Guest "physical" memory, the top physical page to allow, the
  * top level pagetable and the entry point for the Guest. */
 static int tell_kernel(unsigned long pgdir, unsigned long start)
 {
@@ -572,13 +513,14 @@ static void add_device_fd(int fd)
 /*L:200
  * The Waker.
  *
- * With a console and network devices, we can have lots of input which we need
- * to process.  We could try to tell the kernel what file descriptors to watch,
- * but handing a file descriptor mask through to the kernel is fairly icky.
+ * With console, block and network devices, we can have lots of input which we
+ * need to process.  We could try to tell the kernel what file descriptors to
+ * watch, but handing a file descriptor mask through to the kernel is fairly
+ * icky.
  *
  * Instead, we fork off a process which watches the file descriptors and writes
- * the LHREQ_BREAK command to the /dev/lguest filedescriptor to tell the Host
- * loop to stop running the Guest.  This causes it to return from the
+ * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
+ * stop running the Guest.  This causes the Launcher to return from the
  * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
  * the LHREQ_BREAK and wake us up again.
  *
@@ -598,15 +540,19 @@ static void wake_parent(int pipefd, int lguest_fd)
                select(devices.max_infd+1, &rfds, NULL, NULL, NULL);
                /* Is it a message from the Launcher? */
                if (FD_ISSET(pipefd, &rfds)) {
-                       int ignorefd;
+                       int fd;
                        /* If read() returns 0, it means the Launcher has
                         * exited.  We silently follow. */
-                       if (read(pipefd, &ignorefd, sizeof(ignorefd)) == 0)
+                       if (read(pipefd, &fd, sizeof(fd)) == 0)
                                exit(0);
-                       /* Otherwise it's telling us there's a problem with one
-                        * of the devices, and we should ignore that file
-                        * descriptor from now on. */
-                       FD_CLR(ignorefd, &devices.infds);
+                       /* Otherwise it's telling us to change what file
+                        * descriptors we're to listen to.  Positive means
+                        * listen to a new one, negative means stop
+                        * listening. */
+                       if (fd >= 0)
+                               FD_SET(fd, &devices.infds);
+                       else
+                               FD_CLR(-fd - 1, &devices.infds);
                } else /* Send LHREQ_BREAK command. */
                        write(lguest_fd, args, sizeof(args));
        }
@@ -617,7 +563,7 @@ static int setup_waker(int lguest_fd)
 {
        int pipefd[2], child;
 
-       /* We create a pipe to talk to the waker, and also so it knows when the
+       /* We create a pipe to talk to the Waker, and also so it knows when the
         * Launcher dies (and closes pipe). */
        pipe(pipefd);
        child = fork();
@@ -625,7 +571,8 @@ static int setup_waker(int lguest_fd)
                err(1, "forking");
 
        if (child == 0) {
-               /* Close the "writing" end of our copy of the pipe */
+               /* We are the Waker: close the "writing" end of our copy of the
+                * pipe and start waiting for input. */
                close(pipefd[1]);
                wake_parent(pipefd[0], lguest_fd);
        }
@@ -636,12 +583,12 @@ static int setup_waker(int lguest_fd)
        return pipefd[1];
 }
 
-/*L:210
+/*
  * Device Handling.
  *
- * When the Guest sends DMA to us, it sends us an array of addresses and sizes.
+ * When the Guest gives us a buffer, it sends an array of addresses and sizes.
  * We need to make sure it's not trying to reach into the Launcher itself, so
- * we have a convenient routine which check it and exits with an error message
+ * we have a convenient routine which checks it and exits with an error message
  * if something funny is going on:
  */
 static void *_check_pointer(unsigned long addr, unsigned int size,
@@ -658,19 +605,9 @@ static void *_check_pointer(unsigned long addr, unsigned int size,
 /* A macro which transparently hands the line number to the real function. */
 #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
 
-/* This simply sets up an iovec array where we can put data to be discarded.
- * This happens when the Guest doesn't want or can't handle the input: we have
- * to get rid of it somewhere, and if we bury it in the ceiling space it will
- * start to smell after a week. */
-static void discard_iovec(struct iovec *iov, unsigned int *num)
-{
-       static char discard_buf[1024];
-       *num = 1;
-       iov->iov_base = discard_buf;
-       iov->iov_len = sizeof(discard_buf);
-}
-
-/* This function returns the next descriptor in the chain, or vq->vring.num. */
+/* Each buffer in the virtqueues is actually a chain of descriptors.  This
+ * function returns the next descriptor in the chain, or vq->vring.num if we're
+ * at the end. */
 static unsigned next_desc(struct virtqueue *vq, unsigned int i)
 {
        unsigned int next;
@@ -749,13 +686,14 @@ static unsigned get_vq_desc(struct virtqueue *vq,
        return head;
 }
 
-/* Once we've used one of their buffers, we tell them about it.  We'll then
+/* After we've used one of their buffers, we tell them about it.  We'll then
  * want to send them an interrupt, using trigger_irq(). */
 static void add_used(struct virtqueue *vq, unsigned int head, int len)
 {
        struct vring_used_elem *used;
 
-       /* Get a pointer to the next entry in the used ring. */
+       /* The virtqueue contains a ring of used buffers.  Get a pointer to the
+        * next entry in that used ring. */
        used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
        used->id = head;
        used->len = len;
@@ -769,6 +707,7 @@ static void trigger_irq(int fd, struct virtqueue *vq)
 {
        unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
 
+       /* If they don't want an interrupt, don't send one. */
        if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
                return;
 
@@ -785,8 +724,11 @@ static void add_used_and_trigger(int fd, struct virtqueue *vq,
        trigger_irq(fd, vq);
 }
 
-/* Here is the input terminal setting we save, and the routine to restore them
- * on exit so the user can see what they type next. */
+/*
+ * The Console
+ *
+ * Here is the input terminal setting we save, and the routine to restore them
+ * on exit so the user gets their terminal back. */
 static struct termios orig_term;
 static void restore_term(void)
 {
@@ -812,12 +754,13 @@ static bool handle_console_input(int fd, struct device *dev)
 
        /* First we need a console buffer from the Guests's input virtqueue. */
        head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
-       if (head == dev->vq->vring.num) {
-               /* If they're not ready for input, we warn and set up to
-                * discard. */
-               warnx("console: no dma buffer!");
-               discard_iovec(iov, &in_num);
-       } else if (out_num)
+
+       /* If they're not ready for input, stop listening to this file
+        * descriptor.  We'll start again once they add an input buffer. */
+       if (head == dev->vq->vring.num)
+               return false;
+
+       if (out_num)
                errx(1, "Output buffers in console in queue?");
 
        /* This is why we convert to iovecs: the readv() call uses them, and so
@@ -827,15 +770,16 @@ static bool handle_console_input(int fd, struct device *dev)
                /* This implies that the console is closed, is /dev/null, or
                 * something went terribly wrong. */
                warnx("Failed to get console input, ignoring console.");
-               /* Put the input terminal back and return failure (meaning,
-                * don't call us again). */
+               /* Put the input terminal back. */
                restore_term();
+               /* Remove callback from input vq, so it doesn't restart us. */
+               dev->vq->handle_output = NULL;
+               /* Stop listening to this fd: don't call us again. */
                return false;
        }
 
-       /* If we actually read the data into the Guest, tell them about it. */
-       if (head != dev->vq->vring.num)
-               add_used_and_trigger(fd, dev->vq, head, len);
+       /* Tell the Guest about the new input. */
+       add_used_and_trigger(fd, dev->vq, head, len);
 
        /* Three ^C within one second?  Exit.
         *
@@ -885,7 +829,10 @@ static void handle_console_output(int fd, struct virtqueue *vq)
        }
 }
 
-/* Handling output for network is also simple: we get all the output buffers
+/*
+ * The Network
+ *
+ * Handling output for network is also simple: we get all the output buffers
  * and write them (ignoring the first element) to this device's file descriptor
  * (stdout). */
 static void handle_net_output(int fd, struct virtqueue *vq)
@@ -898,8 +845,9 @@ static void handle_net_output(int fd, struct virtqueue *vq)
        while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
                if (in)
                        errx(1, "Input buffers in output queue?");
-               /* Check header, but otherwise ignore it (we said we supported
-                * no features). */
+               /* Check header, but otherwise ignore it (we told the Guest we
+                * supported no features, so it shouldn't have anything
+                * interesting). */
                (void)convert(&iov[0], struct virtio_net_hdr);
                len = writev(vq->dev->fd, iov+1, out-1);
                add_used_and_trigger(fd, vq, head, len);
@@ -924,7 +872,8 @@ static bool handle_tun_input(int fd, struct device *dev)
                /* FIXME: Actually want DRIVER_ACTIVE here. */
                if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK)
                        warn("network: no dma buffer!");
-               discard_iovec(iov, &in_num);
+               /* We'll turn this back on if input buffers are registered. */
+               return false;
        } else if (out_num)
                errx(1, "Output buffers in network recv queue?");
 
@@ -938,9 +887,8 @@ static bool handle_tun_input(int fd, struct device *dev)
        if (len <= 0)
                err(1, "reading network");
 
-       /* If we actually read the data into the Guest, tell them about it. */
-       if (head != dev->vq->vring.num)
-               add_used_and_trigger(fd, dev->vq, head, sizeof(*hdr) + len);
+       /* Tell the Guest about the new packet. */
+       add_used_and_trigger(fd, dev->vq, head, sizeof(*hdr) + len);
 
        verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
                ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
@@ -950,6 +898,16 @@ static bool handle_tun_input(int fd, struct device *dev)
        return true;
 }
 
+/*L:215 This is the callback attached to the network and console input
+ * virtqueues: it ensures we try again, in case we stopped console or net
+ * delivery because Guest didn't have any buffers. */
+static void enable_fd(int fd, struct virtqueue *vq)
+{
+       add_device_fd(vq->dev->fd);
+       /* Tell waker to listen to it again */
+       write(waker_fd, &vq->dev->fd, sizeof(vq->dev->fd));
+}
+
 /* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
 static void handle_output(int fd, unsigned long addr)
 {
@@ -977,7 +935,7 @@ static void handle_output(int fd, unsigned long addr)
              strnlen(from_guest_phys(addr), guest_limit - addr));
 }
 
-/* This is called when the waker wakes us up: check for incoming file
+/* This is called when the Waker wakes us up: check for incoming file
  * descriptors. */
 static void handle_input(int fd)
 {
@@ -996,17 +954,22 @@ static void handle_input(int fd)
                 * file descriptors and a method of handling them.  */
                for (i = devices.dev; i; i = i->next) {
                        if (i->handle_input && FD_ISSET(i->fd, &fds)) {
+                               int dev_fd;
+                               if (i->handle_input(fd, i))
+                                       continue;
+
                                /* If handle_input() returns false, it means we
-                                * should no longer service it.
-                                * handle_console_input() does this. */
-                               if (!i->handle_input(fd, i)) {
-                                       /* Clear it from the set of input file
-                                        * descriptors kept at the head of the
-                                        * device list. */
-                                       FD_CLR(i->fd, &devices.infds);
-                                       /* Tell waker to ignore it too... */
-                                       write(waker_fd, &i->fd, sizeof(i->fd));
-                               }
+                                * should no longer service it.  Networking and
+                                * console do this when there's no input
+                                * buffers to deliver into.  Console also uses
+                                * it when it discovers that stdin is
+                                * closed. */
+                               FD_CLR(i->fd, &devices.infds);
+                               /* Tell waker to ignore it too, by sending a
+                                * negative fd number (-1, since 0 is a valid
+                                * FD number). */
+                               dev_fd = -i->fd - 1;
+                               write(waker_fd, &dev_fd, sizeof(dev_fd));
                        }
                }
        }
@@ -1039,8 +1002,7 @@ static struct lguest_device_desc *new_dev_desc(u16 type)
 }
 
 /* Each device descriptor is followed by some configuration information.
- * The first byte is a "status" byte for the Guest to report what's happening.
- * After that are fields: u8 type, u8 len, [... len bytes...].
+ * Each configuration field looks like: u8 type, u8 len, [... len bytes...].
  *
  * This routine adds a new field to an existing device's descriptor.  It only
  * works for the last device, but that's OK because that's how we use it. */
@@ -1097,14 +1059,17 @@ static void add_virtqueue(struct device *dev, unsigned int num_descs,
        /* Link virtqueue back to device. */
        vq->dev = dev;
 
-       /* Set up handler. */
+       /* Set the routine to call when the Guest does something to this
+        * virtqueue. */
        vq->handle_output = handle_output;
+
+       /* Set the "Don't Notify Me" flag if we don't have a handler */
        if (!handle_output)
                vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
 }
 
 /* This routine does all the creation and setup of a new device, including
- * caling new_dev_desc() to allocate the descriptor and device memory. */
+ * calling new_dev_desc() to allocate the descriptor and device memory. */
 static struct device *new_device(const char *name, u16 type, int fd,
                                 bool (*handle_input)(int, struct device *))
 {
@@ -1113,7 +1078,7 @@ static struct device *new_device(const char *name, u16 type, int fd,
        /* Append to device list.  Prepending to a single-linked list is
         * easier, but the user expects the devices to be arranged on the bus
         * in command-line order.  The first network device on the command line
-        * is eth0, the first block device /dev/lgba, etc. */
+        * is eth0, the first block device /dev/vda, etc. */
        *devices.lastdev = dev;
        dev->next = NULL;
        devices.lastdev = &dev->next;
@@ -1154,11 +1119,11 @@ static void setup_console(void)
        dev->priv = malloc(sizeof(struct console_abort));
        ((struct console_abort *)dev->priv)->count = 0;
 
-       /* The console needs two virtqueues: the input then the output.  We
-        * don't care when they refill the input queue, since we don't hold
-        * data waiting for them.  That's why the input queue's callback is
-        * NULL.  */
-       add_virtqueue(dev, VIRTQUEUE_NUM, NULL);
+       /* The console needs two virtqueues: the input then the output.  When
+        * they put something the input queue, we make sure we're listening to
+        * stdin.  When they put something in the output queue, we write it to
+        * stdout. */
+       add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
        add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
 
        verbose("device %u: console\n", devices.device_num++);
@@ -1270,8 +1235,9 @@ static void setup_tun_net(const char *arg)
        /* First we create a new network device. */
        dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
 
-       /* Network devices need a receive and a send queue. */
-       add_virtqueue(dev, VIRTQUEUE_NUM, NULL);
+       /* Network devices need a receive and a send queue, just like
+        * console. */
+       add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
        add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
 
        /* We need a socket to perform the magic network ioctls to bring up the
@@ -1304,21 +1270,17 @@ static void setup_tun_net(const char *arg)
                verbose("attached to bridge: %s\n", br_name);
 }
 
-
-/*
- * Block device.
- *
- * Serving a block device is really easy: the Guest asks for a block number and
- * we read or write that position in the file.
+/* Our block (disk) device should be really simple: the Guest asks for a block
+ * number and we read or write that position in the file.  Unfortunately, that
+ * was amazingly slow: the Guest waits until the read is finished before
+ * running anything else, even if it could have been doing useful work.
  *
- * Unfortunately, this is amazingly slow: the Guest waits until the read is
- * finished before running anything else, even if it could be doing useful
- * work.  We could use async I/O, except it's reputed to suck so hard that
- * characters actually go missing from your code when you try to use it.
+ * We could use async I/O, except it's reputed to suck so hard that characters
+ * actually go missing from your code when you try to use it.
  *
  * So we farm the I/O out to thread, and communicate with it via a pipe. */
 
-/* This hangs off device->priv, with the data. */
+/* This hangs off device->priv. */
 struct vblk_info
 {
        /* The size of the file. */
@@ -1334,8 +1296,14 @@ struct vblk_info
         * Launcher triggers interrupt to Guest. */
        int done_fd;
 };
+/*:*/
 
-/* This is the core of the I/O thread.  It returns true if it did something. */
+/*L:210
+ * The Disk
+ *
+ * Remember that the block device is handled by a separate I/O thread.  We head
+ * straight into the core of that thread here:
+ */
 static bool service_io(struct device *dev)
 {
        struct vblk_info *vblk = dev->priv;
@@ -1346,10 +1314,14 @@ static bool service_io(struct device *dev)
        struct iovec iov[dev->vq->vring.num];
        off64_t off;
 
+       /* See if there's a request waiting.  If not, nothing to do. */
        head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
        if (head == dev->vq->vring.num)
                return false;
 
+       /* Every block request should contain at least one output buffer
+        * (detailing the location on disk and the type of request) and one
+        * input buffer (to hold the result). */
        if (out_num == 0 || in_num == 0)
                errx(1, "Bad virtblk cmd %u out=%u in=%u",
                     head, out_num, in_num);
@@ -1358,10 +1330,15 @@ static bool service_io(struct device *dev)
        in = convert(&iov[out_num+in_num-1], struct virtio_blk_inhdr);
        off = out->sector * 512;
 
-       /* This is how we implement barriers.  Pretty poor, no? */
+       /* The block device implements "barriers", where the Guest indicates
+        * that it wants all previous writes to occur before this write.  We
+        * don't have a way of asking our kernel to do a barrier, so we just
+        * synchronize all the data in the file.  Pretty poor, no? */
        if (out->type & VIRTIO_BLK_T_BARRIER)
                fdatasync(vblk->fd);
 
+       /* In general the virtio block driver is allowed to try SCSI commands.
+        * It'd be nice if we supported eject, for example, but we don't. */
        if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
                fprintf(stderr, "Scsi commands unsupported\n");
                in->status = VIRTIO_BLK_S_UNSUPP;
@@ -1427,7 +1404,7 @@ static int io_thread(void *_dev)
 
        /* When this read fails, it means Launcher died, so we follow. */
        while (read(vblk->workpipe[0], &c, 1) == 1) {
-               /* We acknowledge each request immediately, to reduce latency,
+               /* We acknowledge each request immediately to reduce latency,
                 * rather than waiting until we've done them all.  I haven't
                 * measured to see if it makes any difference. */
                while (service_io(dev))
@@ -1436,12 +1413,14 @@ static int io_thread(void *_dev)
        return 0;
 }
 
-/* When the thread says some I/O is done, we interrupt the Guest. */
+/* Now we've seen the I/O thread, we return to the Launcher to see what happens
+ * when the thread tells us it's completed some I/O. */
 static bool handle_io_finish(int fd, struct device *dev)
 {
        char c;
 
-       /* If child died, presumably it printed message. */
+       /* If the I/O thread died, presumably it printed the error, so we
+        * simply exit. */
        if (read(dev->fd, &c, 1) != 1)
                exit(1);
 
@@ -1450,7 +1429,7 @@ static bool handle_io_finish(int fd, struct device *dev)
        return true;
 }
 
-/* When the Guest submits some I/O, we wake the I/O thread. */
+/* When the Guest submits some I/O, we just need to wake the I/O thread. */
 static void handle_virtblk_output(int fd, struct virtqueue *vq)
 {
        struct vblk_info *vblk = vq->dev->priv;
@@ -1462,7 +1441,7 @@ static void handle_virtblk_output(int fd, struct virtqueue *vq)
                exit(1);
 }
 
-/* This creates a virtual block device. */
+/*L:198 This actually sets up a virtual block device. */
 static void setup_block_file(const char *filename)
 {
        int p[2];
@@ -1478,7 +1457,7 @@ static void setup_block_file(const char *filename)
        /* The device responds to return from I/O thread. */
        dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
 
-       /* The device has a virtqueue. */
+       /* The device has one virtqueue, where the Guest places requests. */
        add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
 
        /* Allocate the room for our own bookkeeping */
@@ -1500,7 +1479,8 @@ static void setup_block_file(const char *filename)
        /* The I/O thread writes to this end of the pipe when done. */
        vblk->done_fd = p[1];
 
-       /* This is how we tell the I/O thread about more work. */
+       /* This is the second pipe, which is how we tell the I/O thread about
+        * more work. */
        pipe(vblk->workpipe);
 
        /* Create stack for thread and run it */
@@ -1539,24 +1519,25 @@ static void __attribute__((noreturn)) run_guest(int lguest_fd)
                        char reason[1024] = { 0 };
                        read(lguest_fd, reason, sizeof(reason)-1);
                        errx(1, "%s", reason);
-               /* EAGAIN means the waker wanted us to look at some input.
+               /* EAGAIN means the Waker wanted us to look at some input.
                 * Anything else means a bug or incompatible change. */
                } else if (errno != EAGAIN)
                        err(1, "Running guest failed");
 
-               /* Service input, then unset the BREAK which releases
-                * the Waker. */
+               /* Service input, then unset the BREAK to release the Waker. */
                handle_input(lguest_fd);
                if (write(lguest_fd, args, sizeof(args)) < 0)
                        err(1, "Resetting break");
        }
 }
 /*
- * This is the end of the Launcher.
+ * This is the end of the Launcher.  The good news: we are over halfway
+ * through!  The bad news: the most fiendish part of the code still lies ahead
+ * of us.
  *
- * But wait!  We've seen I/O from the Launcher, and we've seen I/O from the
- * Drivers.  If we were to see the Host kernel I/O code, our understanding
* would be complete... :*/
+ * Are you ready?  Take a deep breath and join me in the core of the Host, in
+ * "make Host".
+ :*/
 
 static struct option opts[] = {
        { "verbose", 0, NULL, 'v' },
@@ -1579,10 +1560,10 @@ int main(int argc, char *argv[])
        /* Memory, top-level pagetable, code startpoint and size of the
         * (optional) initrd. */
        unsigned long mem = 0, pgdir, start, initrd_size = 0;
-       /* A temporary and the /dev/lguest file descriptor. */
+       /* Two temporaries and the /dev/lguest file descriptor. */
        int i, c, lguest_fd;
        /* The boot information for the Guest. */
-       void *boot;
+       struct boot_params *boot;
        /* If they specify an initrd file to load. */
        const char *initrd_name = NULL;
 
@@ -1658,10 +1639,10 @@ int main(int argc, char *argv[])
                initrd_size = load_initrd(initrd_name, mem);
                /* These are the location in the Linux boot header where the
                 * start and size of the initrd are expected to be found. */
-               *(unsigned long *)(boot+0x218) = mem - initrd_size;
-               *(unsigned long *)(boot+0x21c) = initrd_size;
+               boot->hdr.ramdisk_image = mem - initrd_size;
+               boot->hdr.ramdisk_size = initrd_size;
                /* The bootloader type 0xFF means "unknown"; that's OK. */
-               *(unsigned char *)(boot+0x210) = 0xFF;
+               boot->hdr.type_of_loader = 0xFF;
        }
 
        /* Set up the initial linear pagetables, starting below the initrd. */
@@ -1669,16 +1650,22 @@ int main(int argc, char *argv[])
 
        /* The Linux boot header contains an "E820" memory map: ours is a
         * simple, single region. */
-       *(char*)(boot+E820NR) = 1;
-       *((struct e820entry *)(boot+E820MAP))
-               = ((struct e820entry) { 0, mem, E820_RAM });
+       boot->e820_entries = 1;
+       boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
        /* The boot header contains a command line pointer: we put the command
-        * line after the boot header (at address 4096) */
-       *(u32 *)(boot + 0x228) = 4096;
-       concat(boot + 4096, argv+optind+2);
+        * line after the boot header. */
+       boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
+       /* We use a simple helper to copy the arguments separated by spaces. */
+       concat((char *)(boot + 1), argv+optind+2);
+
+       /* Boot protocol version: 2.07 supports the fields for lguest. */
+       boot->hdr.version = 0x207;
+
+       /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
+       boot->hdr.hardware_subarch = 1;
 
-       /* The guest type value of "1" tells the Guest it's under lguest. */
-       *(int *)(boot + 0x23c) = 1;
+       /* Tell the entry path not to try to reload segment registers. */
+       boot->hdr.loadflags |= KEEP_SEGMENTS;
 
        /* We tell the kernel to initialize the Guest: this returns the open
         * /dev/lguest file descriptor. */