www.usr.com/support/gpl/USR9107_release.1.4.tar.gz
[bcm963xx.git] / userapps / opensource / sshd / libtommath / bn_mp_jacobi.c
1 #include <tommath.h>
2 #ifdef BN_MP_JACOBI_C
3 /* LibTomMath, multiple-precision integer library -- Tom St Denis
4  *
5  * LibTomMath is a library that provides multiple-precision
6  * integer arithmetic as well as number theoretic functionality.
7  *
8  * The library was designed directly after the MPI library by
9  * Michael Fromberger but has been written from scratch with
10  * additional optimizations in place.
11  *
12  * The library is free for all purposes without any express
13  * guarantee it works.
14  *
15  * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
16  */
17
18 /* computes the jacobi c = (a | n) (or Legendre if n is prime)
19  * HAC pp. 73 Algorithm 2.149
20  */
21 int mp_jacobi (mp_int * a, mp_int * p, int *c)
22 {
23   mp_int  a1, p1;
24   int     k, s, r, res;
25   mp_digit residue;
26
27   /* if p <= 0 return MP_VAL */
28   if (mp_cmp_d(p, 0) != MP_GT) {
29      return MP_VAL;
30   }
31
32   /* step 1.  if a == 0, return 0 */
33   if (mp_iszero (a) == 1) {
34     *c = 0;
35     return MP_OKAY;
36   }
37
38   /* step 2.  if a == 1, return 1 */
39   if (mp_cmp_d (a, 1) == MP_EQ) {
40     *c = 1;
41     return MP_OKAY;
42   }
43
44   /* default */
45   s = 0;
46
47   /* step 3.  write a = a1 * 2**k  */
48   if ((res = mp_init_copy (&a1, a)) != MP_OKAY) {
49     return res;
50   }
51
52   if ((res = mp_init (&p1)) != MP_OKAY) {
53     goto LBL_A1;
54   }
55
56   /* divide out larger power of two */
57   k = mp_cnt_lsb(&a1);
58   if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) {
59      goto LBL_P1;
60   }
61
62   /* step 4.  if e is even set s=1 */
63   if ((k & 1) == 0) {
64     s = 1;
65   } else {
66     /* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */
67     residue = p->dp[0] & 7;
68
69     if (residue == 1 || residue == 7) {
70       s = 1;
71     } else if (residue == 3 || residue == 5) {
72       s = -1;
73     }
74   }
75
76   /* step 5.  if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
77   if ( ((p->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) {
78     s = -s;
79   }
80
81   /* if a1 == 1 we're done */
82   if (mp_cmp_d (&a1, 1) == MP_EQ) {
83     *c = s;
84   } else {
85     /* n1 = n mod a1 */
86     if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) {
87       goto LBL_P1;
88     }
89     if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) {
90       goto LBL_P1;
91     }
92     *c = s * r;
93   }
94
95   /* done */
96   res = MP_OKAY;
97 LBL_P1:mp_clear (&p1);
98 LBL_A1:mp_clear (&a1);
99   return res;
100 }
101 #endif