/* * linux/arch/arm/boot/compressed/head.S * * Copyright (C) 1996-2002 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include /* * Debugging stuff * * Note that these macros must not contain any code which is not * 100% relocatable. Any attempt to do so will result in a crash. * Please select one of the following when turning on debugging. */ .macro kputc,val mov r0, \val bl putc .endm .macro kphex,val,len mov r0, \val mov r1, #\len bl phex .endm .macro debug_reloc_start .endm .macro debug_reloc_end .endm .section ".start", #alloc, #execinstr /* * sort out different calling conventions */ .align start: .type start,#function .rept 8 mov r0, r0 .endr b 1f .word 0x016f2818 @ Magic numbers to help the loader .word start @ absolute load/run zImage address .word _edata @ zImage end address 1: mov r7, r1 @ save architecture ID mov r8, #0 @ save r0 teqp pc, #0x0c000003 @ turn off interrupts .text adr r0, LC0 ldmia r0, {r1, r2, r3, r4, r5, r6, ip, sp} subs r0, r0, r1 @ calculate the delta offset teq r0, #0 @ if delta is zero, we're beq not_relocated @ running at the address we @ were linked at. add r2, r2, r0 @ different address, so we add r3, r3, r0 @ need to fix up various add r5, r5, r0 @ pointers. add r6, r6, r0 add ip, ip, r0 add sp, sp, r0 1: ldr r1, [r6, #0] @ relocate entries in the GOT add r1, r1, r0 @ table. This fixes up the str r1, [r6], #4 @ C references. cmp r6, ip blo 1b not_relocated: mov r0, #0 1: str r0, [r2], #4 @ clear bss str r0, [r2], #4 str r0, [r2], #4 str r0, [r2], #4 cmp r2, r3 blo 1b bl cache_on mov r1, sp @ malloc space above stack add r2, sp, #0x10000 @ 64k max /* * Check to see if we will overwrite ourselves. * r4 = final kernel address * r5 = start of this image * r2 = end of malloc space (and therefore this image) * We basically want: * r4 >= r2 -> OK * r4 + image length <= r5 -> OK */ cmp r4, r2 bhs wont_overwrite add r0, r4, #4096*1024 @ 4MB largest kernel size cmp r0, r5 bls wont_overwrite mov r5, r2 @ decompress after malloc space mov r0, r5 mov r3, r7 bl decompress_kernel add r0, r0, #127 bic r0, r0, #127 @ align the kernel length /* * r0 = decompressed kernel length * r1-r3 = unused * r4 = kernel execution address * r5 = decompressed kernel start * r6 = processor ID * r7 = architecture ID * r8-r14 = unused */ add r1, r5, r0 @ end of decompressed kernel adr r2, reloc_start ldr r3, LC1 add r3, r2, r3 1: ldmia r2!, {r8 - r13} @ copy relocation code stmia r1!, {r8 - r13} ldmia r2!, {r8 - r13} stmia r1!, {r8 - r13} cmp r2, r3 blo 1b bl cache_clean_flush add pc, r5, r0 @ call relocation code /* * We're not in danger of overwriting ourselves. Do this the simple way. * * r4 = kernel execution address * r7 = architecture ID */ wont_overwrite: mov r0, r4 mov r3, r7 bl decompress_kernel b call_kernel .type LC0, #object LC0: .word LC0 @ r1 .word __bss_start @ r2 .word _end @ r3 .word _load_addr @ r4 .word _start @ r5 .word _got_start @ r6 .word _got_end @ ip .word user_stack+4096 @ sp LC1: .word reloc_end - reloc_start .size LC0, . - LC0 /* * Turn on the cache. We need to setup some page tables so that we * can have both the I and D caches on. * * We place the page tables 16k down from the kernel execution address, * and we hope that nothing else is using it. If we're using it, we * will go pop! * * On entry, * r4 = kernel execution address * r6 = processor ID * r7 = architecture number * r8 = run-time address of "start" * On exit, * r1, r2, r3, r8, r9, r12 corrupted * This routine must preserve: * r4, r5, r6, r7 */ .align 5 cache_on: mov r3, #8 @ cache_on function b call_cache_fn __setup_mmu: sub r3, r4, #16384 @ Page directory size bic r3, r3, #0xff @ Align the pointer bic r3, r3, #0x3f00 /* * Initialise the page tables, turning on the cacheable and bufferable * bits for the RAM area only. */ mov r0, r3 mov r8, r0, lsr #18 mov r8, r8, lsl #18 @ start of RAM add r9, r8, #0x10000000 @ a reasonable RAM size mov r1, #0x12 orr r1, r1, #3 << 10 add r2, r3, #16384 1: cmp r1, r8 @ if virt > start of RAM orrhs r1, r1, #0x0c @ set cacheable, bufferable cmp r1, r9 @ if virt > end of RAM bichs r1, r1, #0x0c @ clear cacheable, bufferable str r1, [r0], #4 @ 1:1 mapping add r1, r1, #1048576 teq r0, r2 bne 1b /* * If ever we are running from Flash, then we surely want the cache * to be enabled also for our execution instance... We map 2MB of it * so there is no map overlap problem for up to 1 MB compressed kernel. * If the execution is in RAM then we would only be duplicating the above. */ mov r1, #0x1e orr r1, r1, #3 << 10 mov r2, pc, lsr #20 orr r1, r1, r2, lsl #20 add r0, r3, r2, lsl #2 str r1, [r0], #4 add r1, r1, #1048576 str r1, [r0] mov pc, lr __armv4_cache_on: mov r12, lr bl __setup_mmu mov r0, #0 mcr p15, 0, r0, c7, c10, 4 @ drain write buffer mcr p15, 0, r0, c8, c7, 0 @ flush I,D TLBs mrc p15, 0, r0, c1, c0, 0 @ read control reg orr r0, r0, #0x1000 @ I-cache enable orr r0, r0, #0x0030 b __common_cache_on __arm6_cache_on: mov r12, lr bl __setup_mmu mov r0, #0 mcr p15, 0, r0, c7, c0, 0 @ invalidate whole cache v3 mcr p15, 0, r0, c5, c0, 0 @ invalidate whole TLB v3 mov r0, #0x30 __common_cache_on: #ifndef DEBUG orr r0, r0, #0x000d @ Write buffer, mmu #endif mov r1, #-1 mcr p15, 0, r3, c2, c0, 0 @ load page table pointer mcr p15, 0, r1, c3, c0, 0 @ load domain access control mcr p15, 0, r0, c1, c0, 0 @ load control register mov pc, r12 /* * All code following this line is relocatable. It is relocated by * the above code to the end of the decompressed kernel image and * executed there. During this time, we have no stacks. * * r0 = decompressed kernel length * r1-r3 = unused * r4 = kernel execution address * r5 = decompressed kernel start * r6 = processor ID * r7 = architecture ID * r8-r14 = unused */ .align 5 reloc_start: add r8, r5, r0 debug_reloc_start mov r1, r4 1: .rept 4 ldmia r5!, {r0, r2, r3, r9 - r13} @ relocate kernel stmia r1!, {r0, r2, r3, r9 - r13} .endr cmp r5, r8 blo 1b debug_reloc_end call_kernel: bl cache_clean_flush bl cache_off mov r0, #0 mov r1, r7 @ restore architecture number mov pc, r4 @ call kernel /* * Here follow the relocatable cache support functions for the * various processors. This is a generic hook for locating an * entry and jumping to an instruction at the specified offset * from the start of the block. Please note this is all position * independent code. * * r1 = corrupted * r2 = corrupted * r3 = block offset * r6 = corrupted * r12 = corrupted */ call_cache_fn: adr r12, proc_types mrc p15, 0, r6, c0, c0 @ get processor ID 1: ldr r1, [r12, #0] @ get value ldr r2, [r12, #4] @ get mask eor r1, r1, r6 @ (real ^ match) tst r1, r2 @ & mask addeq pc, r12, r3 @ call cache function add r12, r12, #4*5 b 1b /* * Table for cache operations. This is basically: * - CPU ID match * - CPU ID mask * - 'cache on' method instruction * - 'cache off' method instruction * - 'cache flush' method instruction * * We match an entry using: ((real_id ^ match) & mask) == 0 * * Writethrough caches generally only need 'on' and 'off' * methods. Writeback caches _must_ have the flush method * defined. */ .type proc_types,#object proc_types: .word 0x41560600 @ ARM6/610 .word 0xffffffe0 b __arm6_cache_off @ works, but slow b __arm6_cache_off mov pc, lr @ b __arm6_cache_on @ untested @ b __arm6_cache_off @ b __armv3_cache_flush .word 0x41007000 @ ARM7/710 .word 0xfff8fe00 b __arm7_cache_off b __arm7_cache_off mov pc, lr .word 0x41807200 @ ARM720T (writethrough) .word 0xffffff00 b __armv4_cache_on b __armv4_cache_off mov pc, lr .word 0x41129200 @ ARM920T .word 0xff00fff0 b __armv4_cache_on b __armv4_cache_off b __armv4_cache_flush .word 0x4401a100 @ sa110 / sa1100 .word 0xffffffe0 b __armv4_cache_on b __armv4_cache_off b __armv4_cache_flush .word 0x6901b110 @ sa1110 .word 0xfffffff0 b __armv4_cache_on b __armv4_cache_off b __armv4_cache_flush .word 0x69050000 @ xscale .word 0xffff0000 b __armv4_cache_on b __armv4_cache_off b __armv4_cache_flush .word 0 @ unrecognised type .word 0 mov pc, lr mov pc, lr mov pc, lr .size proc_types, . - proc_types /* * Turn off the Cache and MMU. ARMv3 does not support * reading the control register, but ARMv4 does. * * On entry, r6 = processor ID * On exit, r0, r1, r2, r3, r12 corrupted * This routine must preserve: r4, r6, r7 */ .align 5 cache_off: mov r3, #12 @ cache_off function b call_cache_fn __armv4_cache_off: mrc p15, 0, r0, c1, c0 bic r0, r0, #0x000d mcr p15, 0, r0, c1, c0 @ turn MMU and cache off mov r0, #0 mcr p15, 0, r0, c7, c7 @ invalidate whole cache v4 mcr p15, 0, r0, c8, c7 @ invalidate whole TLB v4 mov pc, lr __arm6_cache_off: mov r0, #0x00000030 @ ARM6 control reg. b __armv3_cache_off __arm7_cache_off: mov r0, #0x00000070 @ ARM7 control reg. b __armv3_cache_off __armv3_cache_off: mcr p15, 0, r0, c1, c0, 0 @ turn MMU and cache off mov r0, #0 mcr p15, 0, r0, c7, c0, 0 @ invalidate whole cache v3 mcr p15, 0, r0, c5, c0, 0 @ invalidate whole TLB v3 mov pc, lr /* * Clean and flush the cache to maintain consistency. * * On entry, * r6 = processor ID * On exit, * r1, r2, r3, r12 corrupted * This routine must preserve: * r0, r4, r5, r6, r7 */ .align 5 cache_clean_flush: mov r3, #16 b call_cache_fn __armv4_cache_flush: bic r1, pc, #31 add r2, r1, #65536 @ 2x the largest dcache size 1: ldr r12, [r1], #32 @ s/w flush D cache teq r1, r2 bne 1b mcr p15, 0, r1, c7, c7, 0 @ flush I cache mcr p15, 0, r1, c7, c10, 4 @ drain WB mov pc, lr __armv3_cache_flush: mov r1, #0 mcr p15, 0, r0, c7, c0, 0 @ invalidate whole cache v3 mov pc, lr /* * Various debugging routines for printing hex characters and * memory, which again must be relocatable. */ #ifdef DEBUG .type phexbuf,#object phexbuf: .space 12 .size phexbuf, . - phexbuf phex: adr r3, phexbuf mov r2, #0 strb r2, [r3, r1] 1: subs r1, r1, #1 movmi r0, r3 bmi puts and r2, r0, #15 mov r0, r0, lsr #4 cmp r2, #10 addge r2, r2, #7 add r2, r2, #'0' strb r2, [r3, r1] b 1b puts: loadsp r3 1: ldrb r2, [r0], #1 teq r2, #0 moveq pc, lr 2: writeb r2 mov r1, #0x00020000 3: subs r1, r1, #1 bne 3b teq r2, #'\n' moveq r2, #'\r' beq 2b teq r0, #0 bne 1b mov pc, lr putc: mov r2, r0 mov r0, #0 loadsp r3 b 2b memdump: mov r12, r0 mov r10, lr mov r11, #0 2: mov r0, r11, lsl #2 add r0, r0, r12 mov r1, #8 bl phex mov r0, #':' bl putc 1: mov r0, #' ' bl putc ldr r0, [r12, r11, lsl #2] mov r1, #8 bl phex and r0, r11, #7 teq r0, #3 moveq r0, #' ' bleq putc and r0, r11, #7 add r11, r11, #1 teq r0, #7 bne 1b mov r0, #'\n' bl putc cmp r11, #64 blt 2b mov pc, r10 #endif reloc_end: .align .section ".stack", "aw" user_stack: .space 4096