X-Git-Url: http://git.rot13.org/?p=goodfet;a=blobdiff_plain;f=client%2Fgoodfet.glitch;h=1d301a9117c9c2cc72787102085ad83c78947256;hp=aee0d490bd96c46f89cc70ec5a48035c31b3a51a;hb=dd259c9289deb11e84be93647c144192e5ba10b6;hpb=3abb4b2ac781cca9fbf0d44eaaae7238edf99ce8 diff --git a/client/goodfet.glitch b/client/goodfet.glitch index aee0d49..1d301a9 100755 --- a/client/goodfet.glitch +++ b/client/goodfet.glitch @@ -19,6 +19,8 @@ if(len(sys.argv)==1): print "%s avr explore" % sys.argv[0]; print "%s avr graph" % sys.argv[0]; print "%s avr graphx11" % sys.argv[0]; + print "%s avr points" % sys.argv[0]; + print "%s avr npoints" % sys.argv[0]; print """ This populates a database, glitch.db, with a record of all attempted glitches. Graphs can then be generated from the results, allowing @@ -27,7 +29,8 @@ sequence for a new chip is as follows. On a sample chip for the same model as the target, 1) Run 'goodfet $chip learn' in order to learn the glitching voltages. -2) Run 'goodfet $chip explore' to find a time at which to glitch. +2) Run 'goodfet $chip crunch' in order to precompute glitching ranges. +3) Run 'goodfet $chip explore' to find a time at which to glitch. Then on a chip to be extracted, 3) Run 'goodfet $chip exploit' to exploit a chip and recover its firmware.""" @@ -40,6 +43,16 @@ if(sys.argv[2]=="graphx11"): if(sys.argv[2]=="graph"): glitcher.graph(); exit(); +if(sys.argv[2]=="points"): + glitcher.points(); + exit(); +if(sys.argv[2]=="npoints"): + glitcher.npoints(); + exit(); + +if(sys.argv[2]=="crunch"): + glitcher.crunch(); + exit(); glitcher.setup(sys.argv[1]);