include upstream ip1000a driver version 2.09f
[linux-2.4.git] / arch / alpha / mm / numa.c
1 /*
2  *  linux/arch/alpha/mm/numa.c
3  *
4  *  DISCONTIGMEM NUMA alpha support.
5  *
6  *  Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
7  */
8
9 #include <linux/config.h>
10 #include <linux/types.h>
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/bootmem.h>
14 #include <linux/swap.h>
15 #ifdef CONFIG_BLK_DEV_INITRD
16 #include <linux/blk.h>
17 #endif
18
19 #include <asm/hwrpb.h>
20 #include <asm/pgalloc.h>
21
22 plat_pg_data_t *plat_node_data[MAX_NUMNODES];
23 bootmem_data_t plat_node_bdata[MAX_NUMNODES];
24
25 #undef DEBUG_DISCONTIG
26 #ifdef DEBUG_DISCONTIG
27 #define DBGDCONT(args...) printk(args)
28 #else
29 #define DBGDCONT(args...)
30 #endif
31
32 #define PFN_UP(x)       (((x) + PAGE_SIZE-1) >> PAGE_SHIFT)
33 #define PFN_DOWN(x)     ((x) >> PAGE_SHIFT)
34 #define PFN_PHYS(x)     ((x) << PAGE_SHIFT)
35 #define for_each_mem_cluster(memdesc, cluster, i)               \
36         for ((cluster) = (memdesc)->cluster, (i) = 0;           \
37              (i) < (memdesc)->numclusters; (i)++, (cluster)++)
38
39 static void __init show_mem_layout(void)
40 {
41         struct memclust_struct * cluster;
42         struct memdesc_struct * memdesc;
43         int i;
44
45         /* Find free clusters, and init and free the bootmem accordingly.  */
46         memdesc = (struct memdesc_struct *)
47           (hwrpb->mddt_offset + (unsigned long) hwrpb);
48
49         printk("Raw memory layout:\n");
50         for_each_mem_cluster(memdesc, cluster, i) {
51                 printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n",
52                        i, cluster->usage, cluster->start_pfn,
53                        cluster->start_pfn + cluster->numpages);
54         }
55 }
56
57 static void __init
58 setup_memory_node(int nid, void *kernel_end)
59 {
60         extern unsigned long mem_size_limit;
61         struct memclust_struct * cluster;
62         struct memdesc_struct * memdesc;
63         unsigned long start_kernel_pfn, end_kernel_pfn;
64         unsigned long bootmap_size, bootmap_pages, bootmap_start;
65         unsigned long start, end;
66         unsigned long node_pfn_start, node_pfn_end;
67         unsigned long node_min_pfn, node_max_pfn;
68         int i;
69         unsigned long node_datasz = PFN_UP(sizeof(plat_pg_data_t));
70         int show_init = 0;
71
72         /* Find the bounds of current node */
73         node_pfn_start = (NODE_MEM_START(nid)) >> PAGE_SHIFT;
74         node_pfn_end = node_pfn_start + (NODE_MEM_SIZE(nid) >> PAGE_SHIFT);
75         
76         /* Find free clusters, and init and free the bootmem accordingly.  */
77         memdesc = (struct memdesc_struct *)
78           (hwrpb->mddt_offset + (unsigned long) hwrpb);
79
80         /* find the bounds of this node (node_min_pfn/node_max_pfn) */
81         node_min_pfn = ~0UL;
82         node_max_pfn = 0UL;
83         for_each_mem_cluster(memdesc, cluster, i) {
84                 /* Bit 0 is console/PALcode reserved.  Bit 1 is
85                    non-volatile memory -- we might want to mark
86                    this for later.  */
87                 if (cluster->usage & 3)
88                         continue;
89
90                 start = cluster->start_pfn;
91                 end = start + cluster->numpages;
92
93                 if (start >= node_pfn_end || end <= node_pfn_start)
94                         continue;
95
96                 if (!show_init) {
97                         show_init = 1;
98                         printk("Initialing bootmem allocator on Node ID %d\n", nid);
99                 }
100                 printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n",
101                        i, cluster->usage, cluster->start_pfn,
102                        cluster->start_pfn + cluster->numpages);
103
104                 if (start < node_pfn_start)
105                         start = node_pfn_start;
106                 if (end > node_pfn_end)
107                         end = node_pfn_end;
108
109                 if (start < node_min_pfn)
110                         node_min_pfn = start;
111                 if (end > node_max_pfn)
112                         node_max_pfn = end;
113         }
114
115         if (mem_size_limit && node_max_pfn > mem_size_limit) {
116                 static int msg_shown = 0;
117                 if (!msg_shown) {
118                         msg_shown = 1;
119                         printk("setup: forcing memory size to %ldK (from %ldK).\n",
120                                mem_size_limit << (PAGE_SHIFT - 10),
121                                node_max_pfn   << (PAGE_SHIFT - 10));
122                 }
123                 node_max_pfn = mem_size_limit;
124         }
125
126         if (node_min_pfn >= node_max_pfn)
127                 return;
128
129         /* Update global {min,max}_low_pfn from node information. */
130         if (node_min_pfn < min_low_pfn)
131                 min_low_pfn = node_min_pfn;
132         if (node_max_pfn > max_low_pfn)
133                 max_low_pfn = node_max_pfn;
134
135         num_physpages += node_max_pfn - node_min_pfn;
136
137         /* Cute trick to make sure our local node data is on local memory */
138         PLAT_NODE_DATA(nid) = (plat_pg_data_t *)(__va(node_min_pfn << PAGE_SHIFT));
139         /* Quasi-mark the plat_pg_data_t as in-use */
140         node_min_pfn += node_datasz;
141         if (node_min_pfn >= node_max_pfn) {
142                 printk(" not enough mem to reserve PLAT_NODE_DATA");
143                 return;
144         }
145         NODE_DATA(nid)->bdata = &plat_node_bdata[nid];
146
147         printk(" Detected node memory:   start %8lu, end %8lu\n",
148                node_min_pfn, node_max_pfn);
149
150         DBGDCONT(" DISCONTIG: plat_node_data[%d]   is at 0x%p\n", nid, PLAT_NODE_DATA(nid));
151         DBGDCONT(" DISCONTIG: NODE_DATA(%d)->bdata is at 0x%p\n", nid, NODE_DATA(nid)->bdata);
152
153         /* Find the bounds of kernel memory.  */
154         start_kernel_pfn = PFN_DOWN(KERNEL_START_PHYS);
155         end_kernel_pfn = PFN_UP(virt_to_phys(kernel_end));
156         bootmap_start = -1;
157
158         if (!nid && (node_max_pfn < end_kernel_pfn || node_min_pfn > start_kernel_pfn))
159                 panic("kernel loaded out of ram");
160
161         /* Zone start phys-addr must be 2^(MAX_ORDER-1) aligned */
162         node_min_pfn = (node_min_pfn + ((1UL << (MAX_ORDER-1))-1)) & ~((1UL << (MAX_ORDER-1))-1);
163
164         /* We need to know how many physically contiguous pages
165            we'll need for the bootmap.  */
166         bootmap_pages = bootmem_bootmap_pages(node_max_pfn-node_min_pfn);
167
168         /* Now find a good region where to allocate the bootmap.  */
169         for_each_mem_cluster(memdesc, cluster, i) {
170                 if (cluster->usage & 3)
171                         continue;
172
173                 start = cluster->start_pfn;
174                 end = start + cluster->numpages;
175
176                 if (start >= node_max_pfn || end <= node_min_pfn)
177                         continue;
178
179                 if (end > node_max_pfn)
180                         end = node_max_pfn;
181                 if (start < node_min_pfn)
182                         start = node_min_pfn;
183
184                 if (start < start_kernel_pfn) {
185                         if (end > end_kernel_pfn
186                             && end - end_kernel_pfn >= bootmap_pages) {
187                                 bootmap_start = end_kernel_pfn;
188                                 break;
189                         } else if (end > start_kernel_pfn)
190                                 end = start_kernel_pfn;
191                 } else if (start < end_kernel_pfn)
192                         start = end_kernel_pfn;
193                 if (end - start >= bootmap_pages) {
194                         bootmap_start = start;
195                         break;
196                 }
197         }
198
199         if (bootmap_start == -1)
200                 panic("couldn't find a contigous place for the bootmap");
201
202         /* Allocate the bootmap and mark the whole MM as reserved.  */
203         bootmap_size = init_bootmem_node(NODE_DATA(nid), bootmap_start,
204                                          node_min_pfn, node_max_pfn);
205         DBGDCONT(" bootmap_start %lu, bootmap_size %lu, bootmap_pages %lu\n",
206                  bootmap_start, bootmap_size, bootmap_pages);
207
208         /* Mark the free regions.  */
209         for_each_mem_cluster(memdesc, cluster, i) {
210                 if (cluster->usage & 3)
211                         continue;
212
213                 start = cluster->start_pfn;
214                 end = cluster->start_pfn + cluster->numpages;
215
216                 if (start >= node_max_pfn || end <= node_min_pfn)
217                         continue;
218
219                 if (end > node_max_pfn)
220                         end = node_max_pfn;
221                 if (start < node_min_pfn)
222                         start = node_min_pfn;
223
224                 if (start < start_kernel_pfn) {
225                         if (end > end_kernel_pfn) {
226                                 free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start),
227                                              (PFN_PHYS(start_kernel_pfn)
228                                               - PFN_PHYS(start)));
229                                 printk(" freeing pages %ld:%ld\n",
230                                        start, start_kernel_pfn);
231                                 start = end_kernel_pfn;
232                         } else if (end > start_kernel_pfn)
233                                 end = start_kernel_pfn;
234                 } else if (start < end_kernel_pfn)
235                         start = end_kernel_pfn;
236                 if (start >= end)
237                         continue;
238
239                 free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start), PFN_PHYS(end) - PFN_PHYS(start));
240                 printk(" freeing pages %ld:%ld\n", start, end);
241         }
242
243         /* Reserve the bootmap memory.  */
244         reserve_bootmem_node(NODE_DATA(nid), PFN_PHYS(bootmap_start), bootmap_size);
245         printk(" reserving pages %ld:%ld\n", bootmap_start, bootmap_start+PFN_UP(bootmap_size));
246
247         numnodes++;
248 }
249
250 void __init
251 setup_memory(void *kernel_end)
252 {
253         int nid;
254
255         show_mem_layout();
256
257         numnodes = 0;
258
259         min_low_pfn = ~0UL;
260         max_low_pfn = 0UL;
261         for (nid = 0; nid < MAX_NUMNODES; nid++)
262                 setup_memory_node(nid, kernel_end);
263
264 #ifdef CONFIG_BLK_DEV_INITRD
265         initrd_start = INITRD_START;
266         if (initrd_start) {
267                 extern void *move_initrd(unsigned long);
268
269                 initrd_end = initrd_start+INITRD_SIZE;
270                 printk("Initial ramdisk at: 0x%p (%lu bytes)\n",
271                        (void *) initrd_start, INITRD_SIZE);
272
273                 if ((void *)initrd_end > phys_to_virt(PFN_PHYS(max_low_pfn))) {
274                         if (!move_initrd(PFN_PHYS(max_low_pfn)))
275                                 printk("initrd extends beyond end of memory "
276                                        "(0x%08lx > 0x%p)\ndisabling initrd\n",
277                                        initrd_end,
278                                        phys_to_virt(PFN_PHYS(max_low_pfn)));
279                 } else {
280                         reserve_bootmem_node(NODE_DATA(KVADDR_TO_NID(initrd_start)),
281                                              virt_to_phys((void *)initrd_start),
282                                              INITRD_SIZE);
283                 }
284         }
285 #endif /* CONFIG_BLK_DEV_INITRD */
286 }
287
288 void __init paging_init(void)
289 {
290         unsigned int    nid;
291         unsigned long   zones_size[MAX_NR_ZONES] = {0, };
292         unsigned long   dma_local_pfn;
293
294         /*
295          * The old global MAX_DMA_ADDRESS per-arch API doesn't fit
296          * in the NUMA model, for now we convert it to a pfn and
297          * we interpret this pfn as a local per-node information.
298          * This issue isn't very important since none of these machines
299          * have legacy ISA slots anyways.
300          */
301         dma_local_pfn = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
302
303         for (nid = 0; nid < numnodes; nid++) {
304                 unsigned long start_pfn = plat_node_bdata[nid].node_boot_start >> PAGE_SHIFT;
305                 unsigned long end_pfn = plat_node_bdata[nid].node_low_pfn;
306                 unsigned long lmax_mapnr;
307
308                 if (dma_local_pfn >= end_pfn - start_pfn)
309                         zones_size[ZONE_DMA] = end_pfn - start_pfn;
310                 else {
311                         zones_size[ZONE_DMA] = dma_local_pfn;
312                         zones_size[ZONE_NORMAL] = (end_pfn - start_pfn) - dma_local_pfn;
313                 }
314                 free_area_init_node(nid, NODE_DATA(nid), NULL, zones_size, start_pfn<<PAGE_SHIFT, NULL);
315                 lmax_mapnr = PLAT_NODE_DATA_STARTNR(nid) + PLAT_NODE_DATA_SIZE(nid);
316                 if (lmax_mapnr > max_mapnr) {
317                         max_mapnr = lmax_mapnr;
318                         DBGDCONT("Grow max_mapnr to %ld\n", max_mapnr);
319                 }
320         }
321
322         /* Initialize the kernel's ZERO_PGE. */
323         memset((void *)ZERO_PGE, 0, PAGE_SIZE);
324 }
325
326 #define printkdot()                                     \
327 do {                                                    \
328         if (!(i++ % ((100UL*1024*1024)>>PAGE_SHIFT)))   \
329                 printk(".");                            \
330 } while(0)
331
332 #define clobber(p, size) memset(page_address(p), 0xaa, (size))
333
334 void __init mem_stress(void)
335 {
336         LIST_HEAD(x);
337         LIST_HEAD(xx);
338         struct page * p;
339         unsigned long i = 0;
340
341         printk("starting memstress");
342         while ((p = alloc_pages(GFP_ATOMIC, 1))) {
343                 clobber(p, PAGE_SIZE*2);
344                 list_add(&p->list, &x);
345                 printkdot();
346         }
347         while ((p = alloc_page(GFP_ATOMIC))) {
348                 clobber(p, PAGE_SIZE);
349                 list_add(&p->list, &xx);
350                 printkdot();
351         }
352         while (!list_empty(&x)) {
353                 p = list_entry(x.next, struct page, list);
354                 clobber(p, PAGE_SIZE*2);
355                 list_del(x.next);
356                 __free_pages(p, 1);
357                 printkdot();
358         }
359         while (!list_empty(&xx)) {
360                 p = list_entry(xx.next, struct page, list);
361                 clobber(p, PAGE_SIZE);
362                 list_del(xx.next);
363                 __free_pages(p, 0);
364                 printkdot();
365         }
366         printk("I'm still alive duh!\n");
367 }
368
369 #undef printkdot
370 #undef clobber
371
372 void __init mem_init(void)
373 {
374         unsigned long codesize, reservedpages, datasize, initsize, pfn;
375         extern int page_is_ram(unsigned long) __init;
376         extern char _text, _etext, _data, _edata;
377         extern char __init_begin, __init_end;
378         extern unsigned long totalram_pages;
379         unsigned long nid, i;
380         mem_map_t * lmem_map;
381
382         high_memory = (void *) __va(max_mapnr <<PAGE_SHIFT);
383
384         reservedpages = 0;
385         for (nid = 0; nid < numnodes; nid++) {
386                 /*
387                  * This will free up the bootmem, ie, slot 0 memory
388                  */
389                 totalram_pages += free_all_bootmem_node(NODE_DATA(nid));
390
391                 lmem_map = NODE_MEM_MAP(nid);
392                 pfn = NODE_DATA(nid)->node_start_paddr >> PAGE_SHIFT;
393                 for (i = 0; i < PLAT_NODE_DATA_SIZE(nid); i++, pfn++)
394                         if (page_is_ram(pfn) && PageReserved(lmem_map+i))
395                                 reservedpages++;
396         }
397
398         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
399         datasize =  (unsigned long) &_edata - (unsigned long) &_data;
400         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
401
402         printk("Memory: %luk/%luk available (%luk kernel code, %luk reserved, "
403                "%luk data, %luk init)\n",
404                (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
405                num_physpages << (PAGE_SHIFT-10),
406                codesize >> 10,
407                reservedpages << (PAGE_SHIFT-10),
408                datasize >> 10,
409                initsize >> 10);
410 #if 0
411         mem_stress();
412 #endif
413 }
414
415 void
416 show_mem(void)
417 {
418         long i,free = 0,total = 0,reserved = 0;
419         long shared = 0, cached = 0;
420         int nid;
421
422         printk("\nMem-info:\n");
423         show_free_areas();
424         printk("Free swap:       %6dkB\n",nr_swap_pages<<(PAGE_SHIFT-10));
425         for (nid = 0; nid < numnodes; nid++) {
426                 mem_map_t * lmem_map = NODE_MEM_MAP(nid);
427                 i = PLAT_NODE_DATA_SIZE(nid);
428                 while (i-- > 0) {
429                         total++;
430                         if (PageReserved(lmem_map+i))
431                                 reserved++;
432                         else if (PageSwapCache(lmem_map+i))
433                                 cached++;
434                         else if (!page_count(lmem_map+i))
435                                 free++;
436                         else
437                                 shared += atomic_read(&lmem_map[i].count) - 1;
438                 }
439         }
440         printk("%ld pages of RAM\n",total);
441         printk("%ld free pages\n",free);
442         printk("%ld reserved pages\n",reserved);
443         printk("%ld pages shared\n",shared);
444         printk("%ld pages swap cached\n",cached);
445         printk("%ld pages in page table cache\n",pgtable_cache_size);
446         show_buffers();
447 }