more changes on original files
[linux-2.4.git] / arch / ia64 / mm / init.c
1 /*
2  * Initialize MMU support.
3  *
4  * Copyright (C) 1998-2002 Hewlett-Packard Co
5  *      David Mosberger-Tang <davidm@hpl.hp.com>
6  */
7 #include <linux/config.h>
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11
12 #include <linux/bootmem.h>
13 #include <linux/mm.h>
14 #include <linux/personality.h>
15 #include <linux/reboot.h>
16 #include <linux/slab.h>
17 #include <linux/swap.h>
18 #include <linux/efi.h>
19 #include <linux/mmzone.h>
20
21 #include <asm/bitops.h>
22 #include <asm/dma.h>
23 #include <asm/ia32.h>
24 #include <asm/io.h>
25 #include <asm/machvec.h>
26 #include <asm/numa.h>
27 #include <asm/pgalloc.h>
28 #include <asm/sal.h>
29 #include <asm/system.h>
30 #include <asm/uaccess.h>
31 #include <asm/mca.h>
32
33 /* References to section boundaries: */
34 extern char _stext, _etext, _edata, __init_begin, __init_end;
35
36 extern void ia64_tlb_init (void);
37 extern int  filter_rsvd_memory (unsigned long, unsigned long, void *);
38
39 /* Note - may be changed by platform_setup */
40 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
41 #define LARGE_GAP 0x40000000 /* Use virtual mem map if a hole is > than this */
42
43 static unsigned long totalram_pages, reserved_pages;
44 struct page *zero_page_memmap_ptr;              /* map entry for zero page */
45
46 unsigned long vmalloc_end = VMALLOC_END_INIT;
47
48 static struct page *vmem_map;
49 static unsigned long num_dma_physpages;
50
51 int
52 do_check_pgt_cache (int low, int high)
53 {
54         int freed = 0;
55
56         if (pgtable_cache_size > high) {
57                 do {
58                         if (pgd_quicklist)
59                                 free_page((unsigned long)pgd_alloc_one_fast(0)), ++freed;
60                         if (pmd_quicklist)
61                                 free_page((unsigned long)pmd_alloc_one_fast(0, 0)), ++freed;
62                         if (pte_quicklist)
63                                 free_page((unsigned long)pte_alloc_one_fast(0, 0)), ++freed;
64                 } while (pgtable_cache_size > low);
65         }
66         return freed;
67 }
68
69 inline void
70 ia64_set_rbs_bot (void)
71 {
72         unsigned long stack_size = current->rlim[RLIMIT_STACK].rlim_max & -16;
73
74         if (stack_size > MAX_USER_STACK_SIZE)
75                 stack_size = MAX_USER_STACK_SIZE;
76         current->thread.rbs_bot = STACK_TOP - stack_size;
77 }
78
79 /*
80  * This performs some platform-dependent address space initialization.
81  * On IA-64, we want to setup the VM area for the register backing
82  * store (which grows upwards) and install the gateway page which is
83  * used for signal trampolines, etc.
84  */
85 void
86 ia64_init_addr_space (void)
87 {
88         struct vm_area_struct *vma;
89
90         ia64_set_rbs_bot();
91
92         /*
93          * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
94          * the problem.  When the process attempts to write to the register backing store
95          * for the first time, it will get a SEGFAULT in this case.
96          */
97         vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
98         if (vma) {
99                 vma->vm_mm = current->mm;
100                 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
101                 vma->vm_end = vma->vm_start + PAGE_SIZE;
102                 vma->vm_page_prot = PAGE_COPY;
103                 vma->vm_flags = VM_READ|VM_WRITE|VM_MAYREAD|VM_MAYWRITE|VM_GROWSUP;
104                 vma->vm_ops = NULL;
105                 vma->vm_pgoff = 0;
106                 vma->vm_file = NULL;
107                 vma->vm_private_data = NULL;
108                 down_write(&current->mm->mmap_sem);
109                 if (insert_vm_struct(current->mm, vma)) {
110                         up_write(&current->mm->mmap_sem);
111                         kmem_cache_free(vm_area_cachep, vma);
112                         return;
113                 }
114                 up_write(&current->mm->mmap_sem);
115         }
116
117         /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
118         if (!(current->personality & MMAP_PAGE_ZERO)) {
119                 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
120                 if (vma) {
121                         memset(vma, 0, sizeof(*vma));
122                         vma->vm_mm = current->mm;
123                         vma->vm_end = PAGE_SIZE;
124                         vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
125                         vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
126                         down_write(&current->mm->mmap_sem);
127                         if (insert_vm_struct(current->mm, vma)) {
128                                 up_write(&current->mm->mmap_sem);
129                                 kmem_cache_free(vm_area_cachep, vma);
130                                 return;
131                         }
132                         up_write(&current->mm->mmap_sem);
133                 }
134         }
135 }
136
137 void
138 free_initmem (void)
139 {
140         unsigned long addr, eaddr;
141
142         addr = (unsigned long) ia64_imva(&__init_begin);
143         eaddr = (unsigned long) ia64_imva(&__init_end);
144         for (; addr < eaddr; addr += PAGE_SIZE) {
145                 clear_bit(PG_reserved, &virt_to_page((void *)addr)->flags);
146                 set_page_count(virt_to_page((void *)addr), 1);
147                 free_page(addr);
148                 ++totalram_pages;
149         }
150         printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
151                 (&__init_end - &__init_begin) >> 10);
152 }
153
154 void
155 free_initrd_mem(unsigned long start, unsigned long end)
156 {
157         /*
158          * EFI uses 4KB pages while the kernel can use 4KB  or bigger.
159          * Thus EFI and the kernel may have different page sizes. It is
160          * therefore possible to have the initrd share the same page as
161          * the end of the kernel (given current setup).
162          *
163          * To avoid freeing/using the wrong page (kernel sized) we:
164          *      - align up the beginning of initrd
165          *      - align down the end of initrd
166          *
167          *  |             |
168          *  |=============| a000
169          *  |             |
170          *  |             |
171          *  |             | 9000
172          *  |/////////////|
173          *  |/////////////|
174          *  |=============| 8000
175          *  |///INITRD////|
176          *  |/////////////|
177          *  |/////////////| 7000
178          *  |             |
179          *  |KKKKKKKKKKKKK|
180          *  |=============| 6000
181          *  |KKKKKKKKKKKKK|
182          *  |KKKKKKKKKKKKK|
183          *  K=kernel using 8KB pages
184          *
185          * In this example, we must free page 8000 ONLY. So we must align up
186          * initrd_start and keep initrd_end as is.
187          */
188         start = PAGE_ALIGN(start);
189         end = end & PAGE_MASK;
190
191         if (start < end)
192                 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
193
194         for (; start < end; start += PAGE_SIZE) {
195                 if (!VALID_PAGE(virt_to_page((void *)start)))
196                         continue;
197                 clear_bit(PG_reserved, &virt_to_page((void *)start)->flags);
198                 set_page_count(virt_to_page((void *)start), 1);
199                 free_page(start);
200                 ++totalram_pages;
201         }
202 }
203
204 void
205 si_meminfo (struct sysinfo *val)
206 {
207         val->totalram = totalram_pages;
208         val->sharedram = 0;
209         val->freeram = nr_free_pages();
210         val->bufferram = atomic_read(&buffermem_pages);
211         val->totalhigh = 0;
212         val->freehigh = 0;
213         val->mem_unit = PAGE_SIZE;
214         return;
215 }
216
217 void
218 show_mem(void)
219 {
220         int i, reserved;
221         int shared, cached;
222         pg_data_t *pgdat;
223         char *tchar = (numnodes > 1) ? "\t" : "";
224
225         printk("Mem-info:\n");
226         show_free_areas();
227
228         printk("Free swap:       %6dkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
229         for_each_pgdat(pgdat) {
230                 reserved=0;
231                 cached=0;
232                 shared=0;
233                 if (numnodes > 1)
234                         printk("Node ID: %d\n", pgdat->node_id);
235                 for(i = 0; i < pgdat->node_size; i++) {
236                         if (!VALID_PAGE(pgdat->node_mem_map+i))
237                                 continue;
238                         if (PageReserved(pgdat->node_mem_map+i))
239                                 reserved++;
240                         else if (PageSwapCache(pgdat->node_mem_map+i))
241                                 cached++;
242                         else if (page_count(pgdat->node_mem_map + i))
243                                 shared += page_count(pgdat->node_mem_map + i) - 1;
244                 }
245                 printk("%s%ld pages of RAM\n", tchar, pgdat->node_size);
246                 printk("%s%d reserved pages\n", tchar, reserved);
247                 printk("%s%d pages shared\n", tchar, shared);
248                 printk("%s%d pages swap cached\n", tchar, cached);
249         }
250         printk("Total of %ld pages in page table cache\n", pgtable_cache_size);
251         show_buffers();
252         printk("%d free buffer pages\n", nr_free_buffer_pages());
253 }
254
255 /*
256  * This is like put_dirty_page() but installs a clean page with PAGE_GATE protection
257  * (execute-only, typically).
258  */
259 struct page *
260 put_gate_page (struct page *page, unsigned long address)
261 {
262         pgd_t *pgd;
263         pmd_t *pmd;
264         pte_t *pte;
265
266         if (!PageReserved(page))
267                 printk(KERN_ERR "put_gate_page: gate page at 0x%p not in reserved memory\n",
268                        page_address(page));
269
270         pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
271
272         spin_lock(&init_mm.page_table_lock);
273         {
274                 pmd = pmd_alloc(&init_mm, pgd, address);
275                 if (!pmd)
276                         goto out;
277                 pte = pte_alloc(&init_mm, pmd, address);
278                 if (!pte)
279                         goto out;
280                 if (!pte_none(*pte)) {
281                         pte_ERROR(*pte);
282                         goto out;
283                 }
284                 flush_page_to_ram(page);
285                 set_pte(pte, mk_pte(page, PAGE_GATE));
286         }
287   out:  spin_unlock(&init_mm.page_table_lock);
288         /* no need for flush_tlb */
289         return page;
290 }
291
292 void __init
293 ia64_mmu_init (void *my_cpu_data)
294 {
295         unsigned long psr, rid, pta, impl_va_bits;
296         extern void __init tlb_init (void);
297 #ifdef CONFIG_IA64_MCA
298         int cpu;
299 #endif
300
301 #ifdef CONFIG_DISABLE_VHPT
302 #       define VHPT_ENABLE_BIT  0
303 #else
304 #       define VHPT_ENABLE_BIT  1
305 #endif
306
307         /*
308          * Set up the kernel identity mapping for regions 6 and 5.  The mapping for region
309          * 7 is setup up in _start().
310          */
311         psr = ia64_clear_ic();
312
313         rid = ia64_rid(IA64_REGION_ID_KERNEL, __IA64_UNCACHED_OFFSET);
314         ia64_set_rr(__IA64_UNCACHED_OFFSET, (rid << 8) | (IA64_GRANULE_SHIFT << 2));
315
316         rid = ia64_rid(IA64_REGION_ID_KERNEL, VMALLOC_START);
317         ia64_set_rr(VMALLOC_START, (rid << 8) | (PAGE_SHIFT << 2) | 1);
318
319         /* ensure rr6 is up-to-date before inserting the PERCPU_ADDR translation: */
320         ia64_srlz_d();
321
322         ia64_itr(0x2, IA64_TR_PERCPU_DATA, PERCPU_ADDR,
323                  pte_val(mk_pte_phys(__pa(my_cpu_data), PAGE_KERNEL)), PAGE_SHIFT);
324
325         ia64_set_psr(psr);
326         ia64_srlz_i();
327
328         /*
329          * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
330          * address space.  The IA-64 architecture guarantees that at least 50 bits of
331          * virtual address space are implemented but if we pick a large enough page size
332          * (e.g., 64KB), the mapped address space is big enough that it will overlap with
333          * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
334          * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
335          * problem in practice.  Alternatively, we could truncate the top of the mapped
336          * address space to not permit mappings that would overlap with the VMLPT.
337          * --davidm 00/12/06
338          */
339 #       define pte_bits                 3
340 #       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
341         /*
342          * The virtual page table has to cover the entire implemented address space within
343          * a region even though not all of this space may be mappable.  The reason for
344          * this is that the Access bit and Dirty bit fault handlers perform
345          * non-speculative accesses to the virtual page table, so the address range of the
346          * virtual page table itself needs to be covered by virtual page table.
347          */
348 #       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
349 #       define POW2(n)                  (1ULL << (n))
350
351         impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
352
353         if (impl_va_bits < 51 || impl_va_bits > 61)
354                 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
355
356         /* place the VMLPT at the end of each page-table mapped region: */
357         pta = POW2(61) - POW2(vmlpt_bits);
358
359         if (POW2(mapped_space_bits) >= pta)
360                 panic("mm/init: overlap between virtually mapped linear page table and "
361                       "mapped kernel space!");
362         /*
363          * Set the (virtually mapped linear) page table address.  Bit
364          * 8 selects between the short and long format, bits 2-7 the
365          * size of the table, and bit 0 whether the VHPT walker is
366          * enabled.
367          */
368         ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
369
370         ia64_tlb_init();
371
372 #ifdef  CONFIG_IA64_MCA
373         cpu = smp_processor_id();
374
375         /* mca handler uses cr.lid as key to pick the right entry */
376         ia64_mca_tlb_list[cpu].cr_lid = ia64_get_lid();
377
378         /* insert this percpu data information into our list for MCA recovery purposes */
379         ia64_mca_tlb_list[cpu].percpu_paddr = pte_val(mk_pte_phys(__pa(my_cpu_data), PAGE_KERNEL));
380         /* Also save per-cpu tlb flush recipe for use in physical mode mca handler */
381         ia64_mca_tlb_list[cpu].ptce_base = local_cpu_data->ptce_base;
382         ia64_mca_tlb_list[cpu].ptce_count[0] = local_cpu_data->ptce_count[0];
383         ia64_mca_tlb_list[cpu].ptce_count[1] = local_cpu_data->ptce_count[1];
384         ia64_mca_tlb_list[cpu].ptce_stride[0] = local_cpu_data->ptce_stride[0];
385         ia64_mca_tlb_list[cpu].ptce_stride[1] = local_cpu_data->ptce_stride[1];
386 #endif
387 }
388
389 static int
390 create_mem_map_page_table (u64 start, u64 end, void *arg)
391 {
392         unsigned long address, start_page, end_page, next_blk_page;
393         unsigned long blk_start;
394         struct page *map_start, *map_end;
395         int node=0;
396         pgd_t *pgd;
397         pmd_t *pmd;
398         pte_t *pte;
399
400         /* should we use platform_map_nr here? */
401
402         map_start = vmem_map + MAP_NR_DENSE(start);
403         map_end   = vmem_map + MAP_NR_DENSE(end);
404
405         start_page = (unsigned long) map_start & PAGE_MASK;
406         end_page = PAGE_ALIGN((unsigned long) map_end);
407
408         /* force the first iteration to get node id */
409         blk_start = start;
410         next_blk_page = 0;
411
412         for (address = start_page; address < end_page; address += PAGE_SIZE) {
413
414                 /* if we went across a node boundary, get new nid */
415                 if (address >= next_blk_page) {
416                         struct page *map_next_blk;
417
418                         node = paddr_to_nid(__pa(blk_start));
419
420                         /* get end addr of this memblk as next blk_start */
421                         blk_start = (unsigned long) __va(min(end, memblk_endpaddr(__pa(blk_start))));
422                         map_next_blk = vmem_map + MAP_NR_DENSE(blk_start);
423                         next_blk_page = PAGE_ALIGN((unsigned long) map_next_blk);
424                 }
425
426                 pgd = pgd_offset_k(address);
427                 if (pgd_none(*pgd))
428                         pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
429                 pmd = pmd_offset(pgd, address);
430
431                 if (pmd_none(*pmd))
432                         pmd_populate(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
433                 pte = pte_offset(pmd, address);
434
435                 if (pte_none(*pte))
436                         set_pte(pte, mk_pte_phys(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)),
437                                                  PAGE_KERNEL));
438         }
439         return 0;
440 }
441
442 struct memmap_init_callback_data {
443         memmap_init_callback_t *memmap_init;
444         struct page *start;
445         struct page *end;
446         int zone;
447         int highmem;
448 };
449
450 struct memmap_count_callback_data {
451         int node;
452         unsigned long num_physpages;
453         unsigned long num_dma_physpages;
454         unsigned long min_pfn;
455         unsigned long max_pfn;
456 } cdata;
457
458 static int
459 virtual_memmap_init (u64 start, u64 end, void *arg)
460 {
461         struct memmap_init_callback_data *args;
462         struct page *map_start, *map_end;
463
464         args = (struct memmap_init_callback_data *) arg;
465
466         /* Should we use platform_map_nr here? */
467
468         map_start = mem_map + MAP_NR_DENSE(start);
469         map_end   = mem_map + MAP_NR_DENSE(end);
470
471         if (map_start < args->start)
472                 map_start = args->start;
473         if (map_end > args->end)
474                 map_end = args->end;
475
476         /*
477          * We have to initialize "out of bounds" struct page elements
478          * that fit completely on the same pages that were allocated
479          * for the "in bounds" elements because they may be referenced
480          * later (and found to be "reserved").
481          */
482         map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1))
483                         / sizeof(struct page);
484         map_end += ((PAGE_ALIGN((unsigned long) map_end) -
485                                 (unsigned long) map_end)
486                         / sizeof(struct page));
487
488         if (map_start < map_end)
489                 (*args->memmap_init)(map_start, map_end, args->zone,
490                                      page_to_phys(map_start), args->highmem);
491
492         return 0;
493 }
494
495 unsigned long
496 arch_memmap_init (memmap_init_callback_t *memmap_init, struct page *start,
497         struct page *end, int zone, unsigned long start_paddr, int highmem)
498 {
499         if (!vmem_map) 
500                 memmap_init(start,end,zone,page_to_phys(start),highmem);
501         else {
502                 struct memmap_init_callback_data args;
503
504                 args.memmap_init = memmap_init;
505                 args.start = start;
506                 args.end = end;
507                 args.zone = zone;
508                 args.highmem = highmem;
509
510                 efi_memmap_walk(virtual_memmap_init, &args);
511         }
512
513         return page_to_phys(end-1) + PAGE_SIZE;;
514 }
515
516 int
517 ia64_page_valid (struct page *page)
518 {
519         char byte;
520
521         return     (__get_user(byte, (char *) page) == 0)
522                 && (__get_user(byte, (char *) (page + 1) - 1) == 0);
523 }
524
525 #define GRANULEROUNDDOWN(n) ((n) & ~(IA64_GRANULE_SIZE-1))
526 #define GRANULEROUNDUP(n) (((n)+IA64_GRANULE_SIZE-1) & ~(IA64_GRANULE_SIZE-1))
527 #define ORDERROUNDDOWN(n) ((n) & ~((PAGE_SIZE<<MAX_ORDER)-1))
528 static int
529 count_pages (u64 start, u64 end, int node)
530 {
531         start = __pa(start);
532         end = __pa(end);
533         if (node == cdata.node) {
534                 cdata.num_physpages += (end - start) >> PAGE_SHIFT;
535                 if (start <= __pa(MAX_DMA_ADDRESS))
536                         cdata.num_dma_physpages += (min(end, __pa(MAX_DMA_ADDRESS)) - start) >> PAGE_SHIFT;
537                 start = GRANULEROUNDDOWN(__pa(start));
538                 start = ORDERROUNDDOWN(start);
539                 end = GRANULEROUNDUP(__pa(end));
540                 cdata.max_pfn = max(cdata.max_pfn, end >> PAGE_SHIFT);
541                 cdata.min_pfn = min(cdata.min_pfn, start >> PAGE_SHIFT);
542         }
543         return 0;
544 }
545
546 static int
547 find_largest_hole(u64 start, u64 end, void *arg)
548 {
549         u64 *max_gap = arg;
550         static u64 last_end = PAGE_OFFSET;
551
552         /* NOTE: this algorithm assumes efi memmap table is ordered */
553
554         if (*max_gap < (start - last_end))
555                 *max_gap = start - last_end;
556         last_end = end;
557         return 0;
558 }
559
560 /*
561  * Set up the page tables.
562  */
563 void
564 paging_init (void)
565 {
566         unsigned long max_dma;
567         unsigned long zones_size[MAX_NR_ZONES];
568         unsigned long zholes_size[MAX_NR_ZONES];
569         unsigned long max_gap;
570         int node;
571
572         /* initialize mem_map[] */
573
574         max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
575         max_gap = 0;
576         efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
577
578         for (node=0; node < numnodes; node++) {
579                 memset(zones_size, 0, sizeof(zones_size));
580                 memset(zholes_size, 0, sizeof(zholes_size));
581                 memset(&cdata, 0, sizeof(cdata));
582
583                 cdata.node = node;
584                 cdata.min_pfn = ~0;
585
586                 efi_memmap_walk(filter_rsvd_memory, count_pages);
587                 num_dma_physpages += cdata.num_dma_physpages;
588                 num_physpages += cdata.num_physpages;
589
590                 if (cdata.min_pfn >= max_dma) {
591                         zones_size[ZONE_NORMAL] = cdata.max_pfn - cdata.min_pfn;
592                         zholes_size[ZONE_NORMAL] = cdata.max_pfn - cdata.min_pfn - cdata.num_physpages;
593                 } else if (cdata.max_pfn < max_dma) {
594                         zones_size[ZONE_DMA] = cdata.max_pfn - cdata.min_pfn;
595                         zholes_size[ZONE_DMA] = cdata.max_pfn - cdata.min_pfn - cdata.num_dma_physpages;
596                 } else {
597                         zones_size[ZONE_DMA] = max_dma - cdata.min_pfn;
598                         zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - cdata.num_dma_physpages;
599                         zones_size[ZONE_NORMAL] = cdata.max_pfn - max_dma;
600                         zholes_size[ZONE_NORMAL] = zones_size[ZONE_NORMAL] - (cdata.num_physpages - cdata.num_dma_physpages);
601                 }
602         
603                 if (numnodes == 1 && max_gap < LARGE_GAP) {
604                         vmem_map = (struct page *)0;
605                         zones_size[ZONE_DMA] += cdata.min_pfn;
606                         zholes_size[ZONE_DMA] += cdata.min_pfn;
607                         free_area_init_core(0, NODE_DATA(node), &mem_map, zones_size, 0, zholes_size, NULL);
608                 } else {
609         
610                         /* allocate virtual mem_map */
611         
612                         if (node == 0) {
613                                 unsigned long map_size;
614                                 map_size = PAGE_ALIGN(max_low_pfn*sizeof(struct page));
615                                 vmalloc_end -= map_size;
616                                 mem_map = vmem_map = (struct page *) vmalloc_end;
617                                 efi_memmap_walk(create_mem_map_page_table, 0);
618                                 printk(KERN_INFO "Virtual mem_map starts at 0x%p\n", mem_map);
619                         }
620         
621                         free_area_init_node(node, NODE_DATA(node), vmem_map+cdata.min_pfn, zones_size, 
622                                 cdata.min_pfn<<PAGE_SHIFT, zholes_size);
623                 }
624         }
625
626         zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
627 }
628
629 static int
630 count_reserved_pages (u64 start, u64 end, void *arg)
631 {
632         unsigned long num_reserved = 0;
633         struct page *pg;
634
635         for (pg = virt_to_page((void *)start); pg < virt_to_page((void *)end); ++pg)
636                 if (PageReserved(pg))
637                         ++num_reserved;
638         reserved_pages += num_reserved;
639         return 0;
640 }
641
642 void
643 mem_init (void)
644 {
645         extern char __start_gate_section[];
646         long codesize, datasize, initsize;
647         unsigned long num_pgt_pages;
648         pg_data_t *pgdat;
649
650
651 #ifdef CONFIG_PCI
652         /*
653          * This needs to be called _after_ the command line has been parsed but _before_
654          * any drivers that may need the PCI DMA interface are initialized or bootmem has
655          * been freed.
656          */
657         platform_pci_dma_init();
658 #endif
659
660         if (!mem_map)
661                 BUG();
662
663         max_mapnr = max_low_pfn;
664         high_memory = __va(max_low_pfn * PAGE_SIZE);
665
666         for_each_pgdat(pgdat)
667                 totalram_pages += free_all_bootmem_node(pgdat);
668
669         reserved_pages = 0;
670         efi_memmap_walk(filter_rsvd_memory, count_reserved_pages);
671
672         codesize =  (unsigned long) &_etext - (unsigned long) &_stext;
673         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
674         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
675
676         printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, %luk data, %luk init)\n",
677                (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
678                num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
679                reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
680
681         /*
682          * Allow for enough (cached) page table pages so that we can map the entire memory
683          * at least once.  Each task also needs a couple of page tables pages, so add in a
684          * fudge factor for that (don't use "threads-max" here; that would be wrong!).
685          * Don't allow the cache to be more than 10% of total memory, though.
686          */
687 #       define NUM_TASKS        500     /* typical number of tasks */
688         num_pgt_pages = nr_free_pages() / PTRS_PER_PGD + NUM_TASKS;
689         if (num_pgt_pages > nr_free_pages() / 10)
690                 num_pgt_pages = nr_free_pages() / 10;
691         if (num_pgt_pages > pgt_cache_water[1])
692                 pgt_cache_water[1] = num_pgt_pages;
693
694         /* install the gate page in the global page table: */
695         put_gate_page(virt_to_page(ia64_imva(__start_gate_section)), GATE_ADDR);
696
697 #ifdef CONFIG_IA32_SUPPORT
698         ia32_gdt_init();
699 #endif
700 }