setup enviroment for compilation
[linux-2.4.21-pre4.git] / drivers / net / sb1000.c
1 /* sb1000.c: A General Instruments SB1000 driver for linux. */
2 /*
3         Written 1998 by Franco Venturi.
4
5         Copyright 1998 by Franco Venturi.
6         Copyright 1994,1995 by Donald Becker.
7         Copyright 1993 United States Government as represented by the
8         Director, National Security Agency.
9
10         This driver is for the General Instruments SB1000 (internal SURFboard)
11
12         The author may be reached as fventuri@mediaone.net
13
14         This program is free software; you can redistribute it
15         and/or  modify it under  the terms of  the GNU General
16         Public  License as  published  by  the  Free  Software
17         Foundation;  either  version 2 of the License, or  (at
18         your option) any later version.
19
20         Changes:
21
22         981115 Steven Hirsch <shirsch@adelphia.net>
23
24         Linus changed the timer interface.  Should work on all recent
25         development kernels.
26
27         980608 Steven Hirsch <shirsch@adelphia.net>
28
29         Small changes to make it work with 2.1.x kernels. Hopefully,
30         nothing major will change before official release of Linux 2.2.
31         
32         Merged with 2.2 - Alan Cox
33 */
34
35 static char version[] = "sb1000.c:v1.1.2 6/01/98 (fventuri@mediaone.net)\n";
36
37 #include <linux/module.h>
38
39 #include <linux/version.h>
40 #include <linux/kernel.h>
41 #include <linux/sched.h>
42 #include <linux/string.h>
43 #include <linux/interrupt.h>
44 #include <linux/ptrace.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/slab.h>
48 #include <linux/ioport.h>
49 #include <linux/netdevice.h>
50 #include <linux/if_arp.h>
51 #include <linux/skbuff.h>
52 #include <linux/delay.h>        /* for udelay() */
53 #include <asm/processor.h>
54
55 #include <asm/bitops.h>
56 #include <asm/io.h>
57 #include <asm/uaccess.h>
58 #include <linux/etherdevice.h>
59 #include <linux/isapnp.h>
60
61 /* for SIOGCM/SIOSCM stuff */
62
63 #include <linux/if_cablemodem.h>
64
65 #ifdef SB1000_DEBUG
66 int sb1000_debug = SB1000_DEBUG;
67 #else
68 int sb1000_debug = 1;
69 #endif
70
71 static const int SB1000_IO_EXTENT = 8;
72 /* SB1000 Maximum Receive Unit */
73 static const int SB1000_MRU = 1500; /* octects */
74
75 #define NPIDS 4
76 struct sb1000_private {
77         struct sk_buff *rx_skb[NPIDS];
78         short rx_dlen[NPIDS];
79         unsigned int rx_frames;
80         short rx_error_count;
81         short rx_error_dpc_count;
82         unsigned char rx_session_id[NPIDS];
83         unsigned char rx_frame_id[NPIDS];
84         unsigned char rx_pkt_type[NPIDS];
85         struct net_device_stats stats;
86 };
87
88 /* prototypes for Linux interface */
89 extern int sb1000_probe(struct net_device *dev);
90 static int sb1000_open(struct net_device *dev);
91 static int sb1000_dev_ioctl (struct net_device *dev, struct ifreq *ifr, int cmd);
92 static int sb1000_start_xmit(struct sk_buff *skb, struct net_device *dev);
93 static void sb1000_interrupt(int irq, void *dev_id, struct pt_regs *regs);
94 static struct net_device_stats *sb1000_stats(struct net_device *dev);
95 static int sb1000_close(struct net_device *dev);
96
97
98 /* SB1000 hardware routines to be used during open/configuration phases */
99 static inline void nicedelay(unsigned long usecs);
100 static inline int card_wait_for_busy_clear(const int ioaddr[],
101         const char* name);
102 static inline int card_wait_for_ready(const int ioaddr[], const char* name,
103         unsigned char in[]);
104 static inline int card_send_command(const int ioaddr[], const char* name,
105         const unsigned char out[], unsigned char in[]);
106
107 /* SB1000 hardware routines to be used during frame rx interrupt */
108 static inline int sb1000_wait_for_ready(const int ioaddr[], const char* name);
109 static inline int sb1000_wait_for_ready_clear(const int ioaddr[],
110         const char* name);
111 static inline void sb1000_send_command(const int ioaddr[], const char* name,
112         const unsigned char out[]);
113 static inline void sb1000_read_status(const int ioaddr[], unsigned char in[]);
114 static inline void sb1000_issue_read_command(const int ioaddr[],
115         const char* name);
116
117 /* SB1000 commands for open/configuration */
118 static inline int sb1000_reset(const int ioaddr[], const char* name);
119 static inline int sb1000_check_CRC(const int ioaddr[], const char* name);
120 static inline int sb1000_start_get_set_command(const int ioaddr[],
121         const char* name);
122 static inline int sb1000_end_get_set_command(const int ioaddr[],
123         const char* name);
124 static inline int sb1000_activate(const int ioaddr[], const char* name);
125 static inline int sb1000_get_firmware_version(const int ioaddr[],
126         const char* name, unsigned char version[], int do_end);
127 static inline int sb1000_get_frequency(const int ioaddr[], const char* name,
128         int* frequency);
129 static inline int sb1000_set_frequency(const int ioaddr[], const char* name,
130         int frequency);
131 static inline int sb1000_get_PIDs(const int ioaddr[], const char* name,
132         short PID[]);
133 static inline int sb1000_set_PIDs(const int ioaddr[], const char* name,
134         const short PID[]);
135
136 /* SB1000 commands for frame rx interrupt */
137 static inline int sb1000_rx(struct net_device *dev);
138 static inline void sb1000_error_dpc(struct net_device *dev);
139
140 static struct isapnp_device_id id_table[] = {
141         {       ISAPNP_ANY_ID, ISAPNP_ANY_ID,
142                 ISAPNP_VENDOR('G','I','C'), ISAPNP_FUNCTION(0x1000), 0 },
143         {0}
144 };
145
146 MODULE_DEVICE_TABLE(isapnp, id_table);
147
148 /* probe for SB1000 using Plug-n-Play mechanism */
149 int
150 sb1000_probe(struct net_device *dev)
151 {
152
153         unsigned short ioaddr[2], irq;
154         struct pci_dev *idev=NULL;
155         unsigned int serial_number;
156         
157         while(1)
158         {
159                 /*
160                  *      Find the card
161                  */
162                  
163                 idev=isapnp_find_dev(NULL, ISAPNP_VENDOR('G','I','C'),
164                         ISAPNP_FUNCTION(0x1000), idev);
165                         
166                 /*
167                  *      No card
168                  */
169                  
170                 if(idev==NULL)
171                         return -ENODEV;
172                         
173                 /*
174                  *      Bring it online
175                  */
176                  
177                 idev->prepare(idev);
178                 idev->activate(idev);
179                 
180                 /*
181                  *      Ports free ?
182                  */
183                  
184                 if(!idev->resource[0].start || check_region(idev->resource[0].start, 16))
185                         continue;
186                 if(!idev->resource[1].start || check_region(idev->resource[1].start, 16))
187                         continue;
188                 
189                 serial_number = idev->bus->serial;
190                 
191                 ioaddr[0]=idev->resource[0].start;
192                 ioaddr[1]=idev->resource[1].start;
193                 
194                 irq = idev->irq_resource[0].start;
195
196                 /* check I/O base and IRQ */
197                 if (dev->base_addr != 0 && dev->base_addr != ioaddr[0])
198                         continue;
199                 if (dev->rmem_end != 0 && dev->rmem_end != ioaddr[1])
200                         continue;
201                 if (dev->irq != 0 && dev->irq != irq)
202                         continue;
203                         
204                 /*
205                  *      Ok set it up.
206                  */
207                 if (!request_region(ioaddr[0], 16, dev->name))
208                         continue;
209                 if (!request_region(ioaddr[1], 16, dev->name)) {
210                         release_region(ioaddr[0], 16);
211                         continue;
212                 }
213                  
214                 dev->base_addr = ioaddr[0];
215                 /* rmem_end holds the second I/O address - fv */
216                 dev->rmem_end = ioaddr[1];
217                 dev->irq = irq;
218
219                 if (sb1000_debug > 0)
220                         printk(KERN_NOTICE "%s: sb1000 at (%#3.3lx,%#3.3lx), "
221                                 "S/N %#8.8x, IRQ %d.\n", dev->name, dev->base_addr,
222                                 dev->rmem_end, serial_number, dev->irq);
223
224                 dev = init_etherdev(dev, 0);
225                 if (!dev)
226                         return -ENOMEM;
227                 SET_MODULE_OWNER(dev);
228
229                 /* Make up a SB1000-specific-data structure. */
230                 dev->priv = kmalloc(sizeof(struct sb1000_private), GFP_KERNEL);
231                 if (dev->priv == NULL)
232                         return -ENOMEM;
233                 memset(dev->priv, 0, sizeof(struct sb1000_private));
234
235                 if (sb1000_debug > 0)
236                         printk(KERN_NOTICE "%s", version);
237
238                 /* The SB1000-specific entries in the device structure. */
239                 dev->open = sb1000_open;
240                 dev->do_ioctl = sb1000_dev_ioctl;
241                 dev->hard_start_xmit = sb1000_start_xmit;
242                 dev->stop = sb1000_close;
243                 dev->get_stats = sb1000_stats;
244
245                 /* Fill in the generic fields of the device structure. */
246                 dev->change_mtu         = NULL;
247                 dev->hard_header        = NULL;
248                 dev->rebuild_header     = NULL;
249                 dev->set_mac_address    = NULL;
250                 dev->header_cache_update= NULL;
251
252                 dev->type               = ARPHRD_ETHER;
253                 dev->hard_header_len    = 0;
254                 dev->mtu                = 1500;
255                 dev->addr_len           = ETH_ALEN;
256                 /* hardware address is 0:0:serial_number */
257                 dev->dev_addr[0] = 0;
258                 dev->dev_addr[1] = 0;
259                 dev->dev_addr[2] = serial_number >> 24 & 0xff;
260                 dev->dev_addr[3] = serial_number >> 16 & 0xff;
261                 dev->dev_addr[4] = serial_number >>  8 & 0xff;
262                 dev->dev_addr[5] = serial_number >>  0 & 0xff;
263                 dev->tx_queue_len       = 0;
264         
265                 /* New-style flags. */
266                 dev->flags              = IFF_POINTOPOINT|IFF_NOARP;
267
268                 /* Lock resources */
269
270                 return 0;
271         }
272 }
273
274 \f
275 /*
276  * SB1000 hardware routines to be used during open/configuration phases
277  */
278
279 const int TimeOutJiffies = (875 * HZ) / 100;
280
281 static inline void nicedelay(unsigned long usecs)
282 {
283         current->state = TASK_INTERRUPTIBLE;
284         schedule_timeout(HZ);
285         return;
286 }
287
288 /* Card Wait For Busy Clear (cannot be used during an interrupt) */
289 static inline int
290 card_wait_for_busy_clear(const int ioaddr[], const char* name)
291 {
292         unsigned char a;
293         unsigned long timeout;
294
295         a = inb(ioaddr[0] + 7);
296         timeout = jiffies + TimeOutJiffies;
297         while (a & 0x80 || a & 0x40) {
298                 /* a little sleep */
299                 current->state = TASK_INTERRUPTIBLE;
300                 schedule_timeout(0);
301                 a = inb(ioaddr[0] + 7);
302                 if (time_after_eq(jiffies, timeout)) {
303                         printk(KERN_WARNING "%s: card_wait_for_busy_clear timeout\n",
304                                 name);
305                         return -ETIME;
306                 }
307         }
308
309         return 0;
310 }
311
312 /* Card Wait For Ready (cannot be used during an interrupt) */
313 static inline int
314 card_wait_for_ready(const int ioaddr[], const char* name, unsigned char in[])
315 {
316         unsigned char a;
317         unsigned long timeout;
318
319         a = inb(ioaddr[1] + 6);
320         timeout = jiffies + TimeOutJiffies;
321         while (a & 0x80 || !(a & 0x40)) {
322                 /* a little sleep */
323                 current->state = TASK_INTERRUPTIBLE;
324                 schedule_timeout(0);
325                 a = inb(ioaddr[1] + 6);
326                 if (time_after_eq(jiffies, timeout)) {
327                         printk(KERN_WARNING "%s: card_wait_for_ready timeout\n",
328                                 name);
329                         return -ETIME;
330                 }
331         }
332
333         in[1] = inb(ioaddr[0] + 1);
334         in[2] = inb(ioaddr[0] + 2);
335         in[3] = inb(ioaddr[0] + 3);
336         in[4] = inb(ioaddr[0] + 4);
337         in[0] = inb(ioaddr[0] + 5);
338         in[6] = inb(ioaddr[0] + 6);
339         in[5] = inb(ioaddr[1] + 6);
340         return 0;
341 }
342
343 /* Card Send Command (cannot be used during an interrupt) */
344 static inline int
345 card_send_command(const int ioaddr[], const char* name,
346         const unsigned char out[], unsigned char in[])
347 {
348         int status, x;
349
350         if ((status = card_wait_for_busy_clear(ioaddr, name)))
351                 return status;
352         outb(0xa0, ioaddr[0] + 6);
353         outb(out[2], ioaddr[0] + 1);
354         outb(out[3], ioaddr[0] + 2);
355         outb(out[4], ioaddr[0] + 3);
356         outb(out[5], ioaddr[0] + 4);
357         outb(out[1], ioaddr[0] + 5);
358         outb(0xa0, ioaddr[0] + 6);
359         outb(out[0], ioaddr[0] + 7);
360         if (out[0] != 0x20 && out[0] != 0x30) {
361                 if ((status = card_wait_for_ready(ioaddr, name, in)))
362                         return status;
363                 inb(ioaddr[0] + 7);
364                 if (sb1000_debug > 3)
365                         printk(KERN_DEBUG "%s: card_send_command "
366                                 "out: %02x%02x%02x%02x%02x%02x  "
367                                 "in: %02x%02x%02x%02x%02x%02x%02x\n", name,
368                                 out[0], out[1], out[2], out[3], out[4], out[5],
369                                 in[0], in[1], in[2], in[3], in[4], in[5], in[6]);
370         } else {
371                 if (sb1000_debug > 3)
372                         printk(KERN_DEBUG "%s: card_send_command "
373                                 "out: %02x%02x%02x%02x%02x%02x\n", name,
374                                 out[0], out[1], out[2], out[3], out[4], out[5]);
375         }
376
377         if (out[1] == 0x1b) {
378                 x = (out[2] == 0x02);
379         } else {
380                 if (out[0] >= 0x80 && in[0] != (out[1] | 0x80))
381                         return -EIO;
382         }
383         return 0;
384 }
385
386 \f
387 /*
388  * SB1000 hardware routines to be used during frame rx interrupt
389  */
390 const int Sb1000TimeOutJiffies = 7 * HZ;
391
392 /* Card Wait For Ready (to be used during frame rx) */
393 static inline int
394 sb1000_wait_for_ready(const int ioaddr[], const char* name)
395 {
396         unsigned long timeout;
397
398         timeout = jiffies + Sb1000TimeOutJiffies;
399         while (inb(ioaddr[1] + 6) & 0x80) {
400                 if (time_after_eq(jiffies, timeout)) {
401                         printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n",
402                                 name);
403                         return -ETIME;
404                 }
405         }
406         timeout = jiffies + Sb1000TimeOutJiffies;
407         while (!(inb(ioaddr[1] + 6) & 0x40)) {
408                 if (time_after_eq(jiffies, timeout)) {
409                         printk(KERN_WARNING "%s: sb1000_wait_for_ready timeout\n",
410                                 name);
411                         return -ETIME;
412                 }
413         }
414         inb(ioaddr[0] + 7);
415         return 0;
416 }
417
418 /* Card Wait For Ready Clear (to be used during frame rx) */
419 static inline int
420 sb1000_wait_for_ready_clear(const int ioaddr[], const char* name)
421 {
422         unsigned long timeout;
423
424         timeout = jiffies + Sb1000TimeOutJiffies;
425         while (inb(ioaddr[1] + 6) & 0x80) {
426                 if (time_after_eq(jiffies, timeout)) {
427                         printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n",
428                                 name);
429                         return -ETIME;
430                 }
431         }
432         timeout = jiffies + Sb1000TimeOutJiffies;
433         while (inb(ioaddr[1] + 6) & 0x40) {
434                 if (time_after_eq(jiffies, timeout)) {
435                         printk(KERN_WARNING "%s: sb1000_wait_for_ready_clear timeout\n",
436                                 name);
437                         return -ETIME;
438                 }
439         }
440         return 0;
441 }
442
443 /* Card Send Command (to be used during frame rx) */
444 static inline void
445 sb1000_send_command(const int ioaddr[], const char* name,
446         const unsigned char out[])
447 {
448         outb(out[2], ioaddr[0] + 1);
449         outb(out[3], ioaddr[0] + 2);
450         outb(out[4], ioaddr[0] + 3);
451         outb(out[5], ioaddr[0] + 4);
452         outb(out[1], ioaddr[0] + 5);
453         outb(out[0], ioaddr[0] + 7);
454         if (sb1000_debug > 3)
455                 printk(KERN_DEBUG "%s: sb1000_send_command out: %02x%02x%02x%02x"
456                         "%02x%02x\n", name, out[0], out[1], out[2], out[3], out[4], out[5]);
457         return;
458 }
459
460 /* Card Read Status (to be used during frame rx) */
461 static inline void
462 sb1000_read_status(const int ioaddr[], unsigned char in[])
463 {
464         in[1] = inb(ioaddr[0] + 1);
465         in[2] = inb(ioaddr[0] + 2);
466         in[3] = inb(ioaddr[0] + 3);
467         in[4] = inb(ioaddr[0] + 4);
468         in[0] = inb(ioaddr[0] + 5);
469         return;
470 }
471
472 /* Issue Read Command (to be used during frame rx) */
473 static inline void
474 sb1000_issue_read_command(const int ioaddr[], const char* name)
475 {
476         const unsigned char Command0[6] = {0x20, 0x00, 0x00, 0x01, 0x00, 0x00};
477
478         sb1000_wait_for_ready_clear(ioaddr, name);
479         outb(0xa0, ioaddr[0] + 6);
480         sb1000_send_command(ioaddr, name, Command0);
481         return;
482 }
483
484 \f
485 /*
486  * SB1000 commands for open/configuration
487  */
488 /* reset SB1000 card */
489 static inline int
490 sb1000_reset(const int ioaddr[], const char* name)
491 {
492         unsigned char st[7];
493         int port, status;
494         const unsigned char Command0[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00};
495
496         port = ioaddr[1] + 6;
497         outb(0x4, port);
498         inb(port);
499         udelay(1000);
500         outb(0x0, port);
501         inb(port);
502         nicedelay(60000);
503         outb(0x4, port);
504         inb(port);
505         udelay(1000);
506         outb(0x0, port);
507         inb(port);
508         udelay(0);
509
510         if ((status = card_send_command(ioaddr, name, Command0, st)))
511                 return status;
512         if (st[3] != 0xf0)
513                 return -EIO;
514         return 0;
515 }
516
517 /* check SB1000 firmware CRC */
518 static inline int
519 sb1000_check_CRC(const int ioaddr[], const char* name)
520 {
521         unsigned char st[7];
522         int crc, status;
523         const unsigned char Command0[6] = {0x80, 0x1f, 0x00, 0x00, 0x00, 0x00};
524
525         /* check CRC */
526         if ((status = card_send_command(ioaddr, name, Command0, st)))
527                 return status;
528         if (st[1] != st[3] || st[2] != st[4])
529                 return -EIO;
530         crc = st[1] << 8 | st[2];
531         return 0;
532 }
533
534 static inline int
535 sb1000_start_get_set_command(const int ioaddr[], const char* name)
536 {
537         unsigned char st[7];
538         const unsigned char Command0[6] = {0x80, 0x1b, 0x00, 0x00, 0x00, 0x00};
539
540         return card_send_command(ioaddr, name, Command0, st);
541 }
542
543 static inline int
544 sb1000_end_get_set_command(const int ioaddr[], const char* name)
545 {
546         unsigned char st[7];
547         int status;
548         const unsigned char Command0[6] = {0x80, 0x1b, 0x02, 0x00, 0x00, 0x00};
549         const unsigned char Command1[6] = {0x20, 0x00, 0x00, 0x00, 0x00, 0x00};
550
551         if ((status = card_send_command(ioaddr, name, Command0, st)))
552                 return status;
553         return card_send_command(ioaddr, name, Command1, st);
554 }
555
556 static inline int
557 sb1000_activate(const int ioaddr[], const char* name)
558 {
559         unsigned char st[7];
560         int status;
561         const unsigned char Command0[6] = {0x80, 0x11, 0x00, 0x00, 0x00, 0x00};
562         const unsigned char Command1[6] = {0x80, 0x16, 0x00, 0x00, 0x00, 0x00};
563
564         nicedelay(50000);
565         if ((status = card_send_command(ioaddr, name, Command0, st)))
566                 return status;
567         if ((status = card_send_command(ioaddr, name, Command1, st)))
568                 return status;
569         if (st[3] != 0xf1) {
570         if ((status = sb1000_start_get_set_command(ioaddr, name)))
571                         return status;
572                 return -EIO;
573         }
574         udelay(1000);
575     return sb1000_start_get_set_command(ioaddr, name);
576 }
577
578 /* get SB1000 firmware version */
579 static inline int
580 sb1000_get_firmware_version(const int ioaddr[], const char* name,
581         unsigned char version[], int do_end)
582 {
583         unsigned char st[7];
584         int status;
585         const unsigned char Command0[6] = {0x80, 0x23, 0x00, 0x00, 0x00, 0x00};
586
587         if ((status = sb1000_start_get_set_command(ioaddr, name)))
588                 return status;
589         if ((status = card_send_command(ioaddr, name, Command0, st)))
590                 return status;
591         if (st[0] != 0xa3)
592                 return -EIO;
593         version[0] = st[1];
594         version[1] = st[2];
595         if (do_end)
596                 return sb1000_end_get_set_command(ioaddr, name);
597         else
598                 return 0;
599 }
600
601 /* get SB1000 frequency */
602 static inline int
603 sb1000_get_frequency(const int ioaddr[], const char* name, int* frequency)
604 {
605         unsigned char st[7];
606         int status;
607         const unsigned char Command0[6] = {0x80, 0x44, 0x00, 0x00, 0x00, 0x00};
608
609         udelay(1000);
610         if ((status = sb1000_start_get_set_command(ioaddr, name)))
611                 return status;
612         if ((status = card_send_command(ioaddr, name, Command0, st)))
613                 return status;
614         *frequency = ((st[1] << 8 | st[2]) << 8 | st[3]) << 8 | st[4];
615         return sb1000_end_get_set_command(ioaddr, name);
616 }
617
618 /* set SB1000 frequency */
619 static inline int
620 sb1000_set_frequency(const int ioaddr[], const char* name, int frequency)
621 {
622         unsigned char st[7];
623         int status;
624         unsigned char Command0[6] = {0x80, 0x29, 0x00, 0x00, 0x00, 0x00};
625
626         const int FrequencyLowerLimit = 57000;
627         const int FrequencyUpperLimit = 804000;
628
629         if (frequency < FrequencyLowerLimit || frequency > FrequencyUpperLimit) {
630                 printk(KERN_ERR "%s: frequency chosen (%d kHz) is not in the range "
631                         "[%d,%d] kHz\n", name, frequency, FrequencyLowerLimit,
632                         FrequencyUpperLimit);
633                 return -EINVAL;
634         }
635         udelay(1000);
636         if ((status = sb1000_start_get_set_command(ioaddr, name)))
637                 return status;
638         Command0[5] = frequency & 0xff;
639         frequency >>= 8;
640         Command0[4] = frequency & 0xff;
641         frequency >>= 8;
642         Command0[3] = frequency & 0xff;
643         frequency >>= 8;
644         Command0[2] = frequency & 0xff;
645         return card_send_command(ioaddr, name, Command0, st);
646 }
647
648 /* get SB1000 PIDs */
649 static inline int
650 sb1000_get_PIDs(const int ioaddr[], const char* name, short PID[])
651 {
652         unsigned char st[7];
653         int status;
654         const unsigned char Command0[6] = {0x80, 0x40, 0x00, 0x00, 0x00, 0x00};
655         const unsigned char Command1[6] = {0x80, 0x41, 0x00, 0x00, 0x00, 0x00};
656         const unsigned char Command2[6] = {0x80, 0x42, 0x00, 0x00, 0x00, 0x00};
657         const unsigned char Command3[6] = {0x80, 0x43, 0x00, 0x00, 0x00, 0x00};
658
659         udelay(1000);
660         if ((status = sb1000_start_get_set_command(ioaddr, name)))
661                 return status;
662
663         if ((status = card_send_command(ioaddr, name, Command0, st)))
664                 return status;
665         PID[0] = st[1] << 8 | st[2];
666
667         if ((status = card_send_command(ioaddr, name, Command1, st)))
668                 return status;
669         PID[1] = st[1] << 8 | st[2];
670
671         if ((status = card_send_command(ioaddr, name, Command2, st)))
672                 return status;
673         PID[2] = st[1] << 8 | st[2];
674
675         if ((status = card_send_command(ioaddr, name, Command3, st)))
676                 return status;
677         PID[3] = st[1] << 8 | st[2];
678
679         return sb1000_end_get_set_command(ioaddr, name);
680 }
681
682 /* set SB1000 PIDs */
683 static inline int
684 sb1000_set_PIDs(const int ioaddr[], const char* name, const short PID[])
685 {
686         unsigned char st[7];
687         short p;
688         int status;
689         unsigned char Command0[6] = {0x80, 0x31, 0x00, 0x00, 0x00, 0x00};
690         unsigned char Command1[6] = {0x80, 0x32, 0x00, 0x00, 0x00, 0x00};
691         unsigned char Command2[6] = {0x80, 0x33, 0x00, 0x00, 0x00, 0x00};
692         unsigned char Command3[6] = {0x80, 0x34, 0x00, 0x00, 0x00, 0x00};
693         const unsigned char Command4[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00};
694
695         udelay(1000);
696         if ((status = sb1000_start_get_set_command(ioaddr, name)))
697                 return status;
698
699         p = PID[0];
700         Command0[3] = p & 0xff;
701         p >>= 8;
702         Command0[2] = p & 0xff;
703         if ((status = card_send_command(ioaddr, name, Command0, st)))
704                 return status;
705
706         p = PID[1];
707         Command1[3] = p & 0xff;
708         p >>= 8;
709         Command1[2] = p & 0xff;
710         if ((status = card_send_command(ioaddr, name, Command1, st)))
711                 return status;
712
713         p = PID[2];
714         Command2[3] = p & 0xff;
715         p >>= 8;
716         Command2[2] = p & 0xff;
717         if ((status = card_send_command(ioaddr, name, Command2, st)))
718                 return status;
719
720         p = PID[3];
721         Command3[3] = p & 0xff;
722         p >>= 8;
723         Command3[2] = p & 0xff;
724         if ((status = card_send_command(ioaddr, name, Command3, st)))
725                 return status;
726
727         if ((status = card_send_command(ioaddr, name, Command4, st)))
728                 return status;
729         return sb1000_end_get_set_command(ioaddr, name);
730 }
731
732 \f
733 static inline void
734 sb1000_print_status_buffer(const char* name, unsigned char st[],
735         unsigned char buffer[], int size)
736 {
737         int i, j, k;
738
739         printk(KERN_DEBUG "%s: status: %02x %02x\n", name, st[0], st[1]);
740         if (buffer[24] == 0x08 && buffer[25] == 0x00 && buffer[26] == 0x45) {
741                 printk(KERN_DEBUG "%s: length: %d protocol: %d from: %d.%d.%d.%d:%d "
742                         "to %d.%d.%d.%d:%d\n", name, buffer[28] << 8 | buffer[29],
743                         buffer[35], buffer[38], buffer[39], buffer[40], buffer[41],
744             buffer[46] << 8 | buffer[47],
745                         buffer[42], buffer[43], buffer[44], buffer[45],
746             buffer[48] << 8 | buffer[49]);
747         } else {
748                 for (i = 0, k = 0; i < (size + 7) / 8; i++) {
749                         printk(KERN_DEBUG "%s: %s", name, i ? "       " : "buffer:");
750                         for (j = 0; j < 8 && k < size; j++, k++)
751                                 printk(" %02x", buffer[k]);
752                         printk("\n");
753                 }
754         }
755         return;
756 }
757
758 /*
759  * SB1000 commands for frame rx interrupt
760  */
761 /* receive a single frame and assemble datagram
762  * (this is the heart of the interrupt routine)
763  */
764 static inline int
765 sb1000_rx(struct net_device *dev)
766 {
767
768 #define FRAMESIZE 184
769         unsigned char st[2], buffer[FRAMESIZE], session_id, frame_id;
770         short dlen;
771         int ioaddr, ns;
772         unsigned int skbsize;
773         struct sk_buff *skb;
774         struct sb1000_private *lp = (struct sb1000_private *)dev->priv;
775         struct net_device_stats *stats = &lp->stats;
776
777         /* SB1000 frame constants */
778         const int FrameSize = FRAMESIZE;
779         const int NewDatagramHeaderSkip = 8;
780         const int NewDatagramHeaderSize = NewDatagramHeaderSkip + 18;
781         const int NewDatagramDataSize = FrameSize - NewDatagramHeaderSize;
782         const int ContDatagramHeaderSkip = 7;
783         const int ContDatagramHeaderSize = ContDatagramHeaderSkip + 1;
784         const int ContDatagramDataSize = FrameSize - ContDatagramHeaderSize;
785         const int TrailerSize = 4;
786
787         ioaddr = dev->base_addr;
788
789         insw(ioaddr, (unsigned short*) st, 1);
790 #ifdef XXXDEBUG
791 printk("cm0: received: %02x %02x\n", st[0], st[1]);
792 #endif /* XXXDEBUG */
793         lp->rx_frames++;
794
795         /* decide if it is a good or bad frame */
796         for (ns = 0; ns < NPIDS; ns++) {
797                 session_id = lp->rx_session_id[ns];
798                 frame_id = lp->rx_frame_id[ns];
799                 if (st[0] == session_id) {
800                         if (st[1] == frame_id || (!frame_id && (st[1] & 0xf0) == 0x30)) {
801                                 goto good_frame;
802                         } else if ((st[1] & 0xf0) == 0x30 && (st[0] & 0x40)) {
803                                 goto skipped_frame;
804                         } else {
805                                 goto bad_frame;
806                         }
807                 } else if (st[0] == (session_id | 0x40)) {
808                         if ((st[1] & 0xf0) == 0x30) {
809                                 goto skipped_frame;
810                         } else {
811                                 goto bad_frame;
812                         }
813                 }
814         }
815         goto bad_frame;
816
817 skipped_frame:
818         stats->rx_frame_errors++;
819         skb = lp->rx_skb[ns];
820         if (sb1000_debug > 1)
821                 printk(KERN_WARNING "%s: missing frame(s): got %02x %02x "
822                         "expecting %02x %02x\n", dev->name, st[0], st[1],
823                         skb ? session_id : session_id | 0x40, frame_id);
824         if (skb) {
825                 dev_kfree_skb(skb);
826                 skb = 0;
827         }
828
829 good_frame:
830         lp->rx_frame_id[ns] = 0x30 | ((st[1] + 1) & 0x0f);
831         /* new datagram */
832         if (st[0] & 0x40) {
833                 /* get data length */
834                 insw(ioaddr, buffer, NewDatagramHeaderSize / 2);
835 #ifdef XXXDEBUG
836 printk("cm0: IP identification: %02x%02x  fragment offset: %02x%02x\n", buffer[30], buffer[31], buffer[32], buffer[33]);
837 #endif /* XXXDEBUG */
838                 if (buffer[0] != NewDatagramHeaderSkip) {
839                         if (sb1000_debug > 1)
840                                 printk(KERN_WARNING "%s: new datagram header skip error: "
841                                         "got %02x expecting %02x\n", dev->name, buffer[0],
842                                         NewDatagramHeaderSkip);
843                         stats->rx_length_errors++;
844                         insw(ioaddr, buffer, NewDatagramDataSize / 2);
845                         goto bad_frame_next;
846                 }
847                 dlen = ((buffer[NewDatagramHeaderSkip + 3] & 0x0f) << 8 |
848                         buffer[NewDatagramHeaderSkip + 4]) - 17;
849                 if (dlen > SB1000_MRU) {
850                         if (sb1000_debug > 1)
851                                 printk(KERN_WARNING "%s: datagram length (%d) greater "
852                                         "than MRU (%d)\n", dev->name, dlen, SB1000_MRU);
853                         stats->rx_length_errors++;
854                         insw(ioaddr, buffer, NewDatagramDataSize / 2);
855                         goto bad_frame_next;
856                 }
857                 lp->rx_dlen[ns] = dlen;
858                 /* compute size to allocate for datagram */
859                 skbsize = dlen + FrameSize;
860                 if ((skb = alloc_skb(skbsize, GFP_ATOMIC)) == NULL) {
861                         if (sb1000_debug > 1)
862                                 printk(KERN_WARNING "%s: can't allocate %d bytes long "
863                                         "skbuff\n", dev->name, skbsize);
864                         stats->rx_dropped++;
865                         insw(ioaddr, buffer, NewDatagramDataSize / 2);
866                         goto dropped_frame;
867                 }
868                 skb->dev = dev;
869                 skb->mac.raw = skb->data;
870                 skb->protocol = (unsigned short) buffer[NewDatagramHeaderSkip + 16];
871                 insw(ioaddr, skb_put(skb, NewDatagramDataSize),
872                         NewDatagramDataSize / 2);
873                 lp->rx_skb[ns] = skb;
874         } else {
875                 /* continuation of previous datagram */
876                 insw(ioaddr, buffer, ContDatagramHeaderSize / 2);
877                 if (buffer[0] != ContDatagramHeaderSkip) {
878                         if (sb1000_debug > 1)
879                                 printk(KERN_WARNING "%s: cont datagram header skip error: "
880                                         "got %02x expecting %02x\n", dev->name, buffer[0],
881                                         ContDatagramHeaderSkip);
882                         stats->rx_length_errors++;
883                         insw(ioaddr, buffer, ContDatagramDataSize / 2);
884                         goto bad_frame_next;
885                 }
886                 skb = lp->rx_skb[ns];
887                 insw(ioaddr, skb_put(skb, ContDatagramDataSize),
888                         ContDatagramDataSize / 2);
889                 dlen = lp->rx_dlen[ns];
890         }
891         if (skb->len < dlen + TrailerSize) {
892                 lp->rx_session_id[ns] &= ~0x40;
893                 return 0;
894         }
895
896         /* datagram completed: send to upper level */
897         skb_trim(skb, dlen);
898         netif_rx(skb);
899         dev->last_rx = jiffies;
900         stats->rx_bytes+=dlen;
901         stats->rx_packets++;
902         lp->rx_skb[ns] = 0;
903         lp->rx_session_id[ns] |= 0x40;
904         return 0;
905
906 bad_frame:
907         insw(ioaddr, buffer, FrameSize / 2);
908         if (sb1000_debug > 1)
909                 printk(KERN_WARNING "%s: frame error: got %02x %02x\n",
910                         dev->name, st[0], st[1]);
911         stats->rx_frame_errors++;
912 bad_frame_next:
913         if (sb1000_debug > 2)
914                 sb1000_print_status_buffer(dev->name, st, buffer, FrameSize);
915 dropped_frame:
916         stats->rx_errors++;
917         if (ns < NPIDS) {
918                 if ((skb = lp->rx_skb[ns])) {
919                         dev_kfree_skb(skb);
920                         lp->rx_skb[ns] = 0;
921                 }
922                 lp->rx_session_id[ns] |= 0x40;
923         }
924         return -1;
925 }
926
927 static inline void
928 sb1000_error_dpc(struct net_device *dev)
929 {
930         char *name;
931         unsigned char st[5];
932         int ioaddr[2];
933         struct sb1000_private *lp = (struct sb1000_private *)dev->priv;
934         const unsigned char Command0[6] = {0x80, 0x26, 0x00, 0x00, 0x00, 0x00};
935         const int ErrorDpcCounterInitialize = 200;
936
937         ioaddr[0] = dev->base_addr;
938         /* rmem_end holds the second I/O address - fv */
939         ioaddr[1] = dev->rmem_end;
940         name = dev->name;
941
942         sb1000_wait_for_ready_clear(ioaddr, name);
943         sb1000_send_command(ioaddr, name, Command0);
944         sb1000_wait_for_ready(ioaddr, name);
945         sb1000_read_status(ioaddr, st);
946         if (st[1] & 0x10)
947                 lp->rx_error_dpc_count = ErrorDpcCounterInitialize;
948         return;
949 }
950
951 \f
952 /*
953  * Linux interface functions
954  */
955 static int
956 sb1000_open(struct net_device *dev)
957 {
958         char *name;
959         int ioaddr[2], status;
960         struct sb1000_private *lp = (struct sb1000_private *)dev->priv;
961         const unsigned short FirmwareVersion[] = {0x01, 0x01};
962
963         ioaddr[0] = dev->base_addr;
964         /* rmem_end holds the second I/O address - fv */
965         ioaddr[1] = dev->rmem_end;
966         name = dev->name;
967
968         /* initialize sb1000 */
969         if ((status = sb1000_reset(ioaddr, name)))
970                 return status;
971         nicedelay(200000);
972         if ((status = sb1000_check_CRC(ioaddr, name)))
973                 return status;
974
975         /* initialize private data before board can catch interrupts */
976         lp->rx_skb[0] = NULL;
977         lp->rx_skb[1] = NULL;
978         lp->rx_skb[2] = NULL;
979         lp->rx_skb[3] = NULL;
980         lp->rx_dlen[0] = 0;
981         lp->rx_dlen[1] = 0;
982         lp->rx_dlen[2] = 0;
983         lp->rx_dlen[3] = 0;
984         lp->rx_frames = 0;
985         lp->rx_error_count = 0;
986         lp->rx_error_dpc_count = 0;
987         lp->rx_session_id[0] = 0x50;
988         lp->rx_session_id[0] = 0x48;
989         lp->rx_session_id[0] = 0x44;
990         lp->rx_session_id[0] = 0x42;
991         lp->rx_frame_id[0] = 0;
992         lp->rx_frame_id[1] = 0;
993         lp->rx_frame_id[2] = 0;
994         lp->rx_frame_id[3] = 0;
995         if (request_irq(dev->irq, &sb1000_interrupt, 0, "sb1000", dev)) {
996                 return -EAGAIN;
997         }
998
999         if (sb1000_debug > 2)
1000                 printk(KERN_DEBUG "%s: Opening, IRQ %d\n", name, dev->irq);
1001
1002         /* Activate board and check firmware version */
1003         udelay(1000);
1004         if ((status = sb1000_activate(ioaddr, name)))
1005                 return status;
1006         udelay(0);
1007         if ((status = sb1000_get_firmware_version(ioaddr, name, version, 0)))
1008                 return status;
1009         if (version[0] != FirmwareVersion[0] || version[1] != FirmwareVersion[1])
1010                 printk(KERN_WARNING "%s: found firmware version %x.%02x "
1011                         "(should be %x.%02x)\n", name, version[0], version[1],
1012                         FirmwareVersion[0], FirmwareVersion[1]);
1013
1014
1015         netif_start_queue(dev);
1016         return 0;                                       /* Always succeed */
1017 }
1018
1019 static int sb1000_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1020 {
1021         char* name;
1022         unsigned char version[2];
1023         short PID[4];
1024         int ioaddr[2], status, frequency;
1025         unsigned int stats[5];
1026         struct sb1000_private *lp = (struct sb1000_private *)dev->priv;
1027
1028         if (!(dev && dev->flags & IFF_UP))
1029                 return -ENODEV;
1030
1031         ioaddr[0] = dev->base_addr;
1032         /* rmem_end holds the second I/O address - fv */
1033         ioaddr[1] = dev->rmem_end;
1034         name = dev->name;
1035
1036         switch (cmd) {
1037         case SIOCGCMSTATS:              /* get statistics */
1038                 stats[0] = lp->stats.rx_bytes;
1039                 stats[1] = lp->rx_frames;
1040                 stats[2] = lp->stats.rx_packets;
1041                 stats[3] = lp->stats.rx_errors;
1042                 stats[4] = lp->stats.rx_dropped;
1043                 if(copy_to_user(ifr->ifr_data, stats, sizeof(stats)))
1044                         return -EFAULT;
1045                 status = 0;
1046                 break;
1047
1048         case SIOCGCMFIRMWARE:           /* get firmware version */
1049                 if ((status = sb1000_get_firmware_version(ioaddr, name, version, 1)))
1050                         return status;
1051                 if(copy_to_user(ifr->ifr_data, version, sizeof(version)))
1052                         return -EFAULT;
1053                 break;
1054
1055         case SIOCGCMFREQUENCY:          /* get frequency */
1056                 if ((status = sb1000_get_frequency(ioaddr, name, &frequency)))
1057                         return status;
1058                 if(put_user(frequency, (int*) ifr->ifr_data))
1059                         return -EFAULT;
1060                 break;
1061
1062         case SIOCSCMFREQUENCY:          /* set frequency */
1063                 if (!capable(CAP_NET_ADMIN))
1064                         return -EPERM;
1065                 if(get_user(frequency, (int*) ifr->ifr_data))
1066                         return -EFAULT;
1067                 if ((status = sb1000_set_frequency(ioaddr, name, frequency)))
1068                         return status;
1069                 break;
1070
1071         case SIOCGCMPIDS:                       /* get PIDs */
1072                 if ((status = sb1000_get_PIDs(ioaddr, name, PID)))
1073                         return status;
1074                 if(copy_to_user(ifr->ifr_data, PID, sizeof(PID)))
1075                         return -EFAULT;
1076                 break;
1077
1078         case SIOCSCMPIDS:                       /* set PIDs */
1079                 if (!capable(CAP_NET_ADMIN))
1080                         return -EPERM;
1081                 if(copy_from_user(PID, ifr->ifr_data, sizeof(PID)))
1082                         return -EFAULT;
1083                 if ((status = sb1000_set_PIDs(ioaddr, name, PID)))
1084                         return status;
1085                 /* set session_id, frame_id and pkt_type too */
1086                 lp->rx_session_id[0] = 0x50 | (PID[0] & 0x0f);
1087                 lp->rx_session_id[1] = 0x48;
1088                 lp->rx_session_id[2] = 0x44;
1089                 lp->rx_session_id[3] = 0x42;
1090                 lp->rx_frame_id[0] = 0;
1091                 lp->rx_frame_id[1] = 0;
1092                 lp->rx_frame_id[2] = 0;
1093                 lp->rx_frame_id[3] = 0;
1094                 break;
1095
1096         default:
1097                 status = -EINVAL;
1098                 break;
1099         }
1100         return status;
1101 }
1102
1103 /* transmit function: do nothing since SB1000 can't send anything out */
1104 static int
1105 sb1000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1106 {
1107         printk(KERN_WARNING "%s: trying to transmit!!!\n", dev->name);
1108         /* sb1000 can't xmit datagrams */
1109         dev_kfree_skb(skb);
1110         return 0;
1111 }
1112
1113 /* SB1000 interrupt handler. */
1114 static void sb1000_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1115 {
1116         char *name;
1117         unsigned char st;
1118         int ioaddr[2];
1119         struct net_device *dev = (struct net_device *) dev_id;
1120         struct sb1000_private *lp = (struct sb1000_private *)dev->priv;
1121
1122         const unsigned char Command0[6] = {0x80, 0x2c, 0x00, 0x00, 0x00, 0x00};
1123         const unsigned char Command1[6] = {0x80, 0x2e, 0x00, 0x00, 0x00, 0x00};
1124         const int MaxRxErrorCount = 6;
1125
1126         if (dev == NULL) {
1127                 printk(KERN_ERR "sb1000_interrupt(): irq %d for unknown device.\n",
1128                         irq);
1129                 return;
1130         }
1131
1132         ioaddr[0] = dev->base_addr;
1133         /* rmem_end holds the second I/O address - fv */
1134         ioaddr[1] = dev->rmem_end;
1135         name = dev->name;
1136
1137         /* is it a good interrupt? */
1138         st = inb(ioaddr[1] + 6);
1139         if (!(st & 0x08 && st & 0x20)) {
1140                 return;
1141         }
1142
1143         if (sb1000_debug > 3)
1144                 printk(KERN_DEBUG "%s: entering interrupt\n", dev->name);
1145
1146         st = inb(ioaddr[0] + 7);
1147         if (sb1000_rx(dev))
1148                 lp->rx_error_count++;
1149 #ifdef SB1000_DELAY
1150         udelay(SB1000_DELAY);
1151 #endif /* SB1000_DELAY */
1152         sb1000_issue_read_command(ioaddr, name);
1153         if (st & 0x01) {
1154                 sb1000_error_dpc(dev);
1155                 sb1000_issue_read_command(ioaddr, name);
1156         }
1157         if (lp->rx_error_dpc_count && !(--lp->rx_error_dpc_count)) {
1158                 sb1000_wait_for_ready_clear(ioaddr, name);
1159                 sb1000_send_command(ioaddr, name, Command0);
1160                 sb1000_wait_for_ready(ioaddr, name);
1161                 sb1000_issue_read_command(ioaddr, name);
1162         }
1163         if (lp->rx_error_count >= MaxRxErrorCount) {
1164                 sb1000_wait_for_ready_clear(ioaddr, name);
1165                 sb1000_send_command(ioaddr, name, Command1);
1166                 sb1000_wait_for_ready(ioaddr, name);
1167                 sb1000_issue_read_command(ioaddr, name);
1168                 lp->rx_error_count = 0;
1169         }
1170
1171         return;
1172 }
1173
1174 static struct net_device_stats *sb1000_stats(struct net_device *dev)
1175 {
1176         struct sb1000_private *lp = (struct sb1000_private *)dev->priv;
1177         return &lp->stats;
1178 }
1179
1180 static int sb1000_close(struct net_device *dev)
1181 {
1182         int i;
1183         int ioaddr[2];
1184         struct sb1000_private *lp = (struct sb1000_private *)dev->priv;
1185
1186         if (sb1000_debug > 2)
1187                 printk(KERN_DEBUG "%s: Shutting down sb1000.\n", dev->name);
1188
1189         netif_stop_queue(dev);
1190         
1191         ioaddr[0] = dev->base_addr;
1192         /* rmem_end holds the second I/O address - fv */
1193         ioaddr[1] = dev->rmem_end;
1194
1195         free_irq(dev->irq, dev);
1196         /* If we don't do this, we can't re-insmod it later. */
1197         release_region(ioaddr[1], SB1000_IO_EXTENT);
1198         release_region(ioaddr[0], SB1000_IO_EXTENT);
1199
1200         /* free rx_skb's if needed */
1201         for (i=0; i<4; i++) {
1202                 if (lp->rx_skb[i]) {
1203                         dev_kfree_skb(lp->rx_skb[i]);
1204                 }
1205         }
1206         return 0;
1207 }
1208
1209 #ifdef MODULE
1210 MODULE_AUTHOR("Franco Venturi <fventuri@mediaone.net>");
1211 MODULE_DESCRIPTION("General Instruments SB1000 driver");
1212 MODULE_LICENSE("GPL");
1213
1214 MODULE_PARM(io, "1-2i");
1215 MODULE_PARM(irq, "i");
1216 MODULE_PARM_DESC(io, "SB1000 I/O base addresses");
1217 MODULE_PARM_DESC(irq, "SB1000 IRQ number");
1218
1219 static struct net_device dev_sb1000;
1220 static int io[2];
1221 static int irq;
1222
1223 int
1224 init_module(void)
1225 {
1226         int i;
1227         for (i = 0; i < 100; i++) {
1228                 sprintf(dev_sb1000.name, "cm%d", i);
1229                 if (dev_get(dev_sb1000.name) == 0) break;
1230         }
1231         if (i == 100) {
1232                 printk(KERN_ERR "sb1000: can't register any device cm<n>\n");
1233                 return -ENFILE;
1234         }
1235         dev_sb1000.init = sb1000_probe;
1236         dev_sb1000.base_addr = io[0];
1237         /* rmem_end holds the second I/O address - fv */
1238         dev_sb1000.rmem_end = io[1];
1239         dev_sb1000.irq = irq;
1240         if (register_netdev(&dev_sb1000) != 0) {
1241                 printk(KERN_ERR "sb1000: failed to register device (io: %03x,%03x   "
1242                         "irq: %d)\n", io[0], io[1], irq);
1243                 return -EIO;
1244         }
1245         return 0;
1246 }
1247
1248 void cleanup_module(void)
1249 {
1250         unregister_netdev(&dev_sb1000);
1251         release_region(dev_sb1000.base_addr, 16);
1252         release_region(dev_sb1000.rmem_end, 16);
1253         kfree(dev_sb1000.priv);
1254         dev_sb1000.priv = NULL;
1255 }
1256 #endif /* MODULE */
1257 \f
1258 /*
1259  * Local variables:
1260  *  compile-command: "gcc -D__KERNEL__ -DMODULE -Wall -Wstrict-prototypes -O -m486 -c sb1000.c"
1261  *  version-control: t
1262  *  tab-width: 4
1263  *  c-basic-offset: 4
1264  * End:
1265  */