and added files
[bcm963xx.git] / kernel / linux / kernel / sys.c
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 #include <linux/config.h>
8 #include <linux/compat.h>
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/utsname.h>
12 #include <linux/mman.h>
13 #include <linux/smp_lock.h>
14 #include <linux/notifier.h>
15 #include <linux/reboot.h>
16 #include <linux/prctl.h>
17 #include <linux/init.h>
18 #include <linux/highuid.h>
19 #include <linux/fs.h>
20 #include <linux/workqueue.h>
21 #include <linux/device.h>
22 #include <linux/times.h>
23 #include <linux/security.h>
24 #include <linux/dcookies.h>
25 #include <linux/suspend.h>
26
27 #include <asm/uaccess.h>
28 #include <asm/io.h>
29 #include <asm/unistd.h>
30
31 #ifndef SET_UNALIGN_CTL
32 # define SET_UNALIGN_CTL(a,b)   (-EINVAL)
33 #endif
34 #ifndef GET_UNALIGN_CTL
35 # define GET_UNALIGN_CTL(a,b)   (-EINVAL)
36 #endif
37 #ifndef SET_FPEMU_CTL
38 # define SET_FPEMU_CTL(a,b)     (-EINVAL)
39 #endif
40 #ifndef GET_FPEMU_CTL
41 # define GET_FPEMU_CTL(a,b)     (-EINVAL)
42 #endif
43 #ifndef SET_FPEXC_CTL
44 # define SET_FPEXC_CTL(a,b)     (-EINVAL)
45 #endif
46 #ifndef GET_FPEXC_CTL
47 # define GET_FPEXC_CTL(a,b)     (-EINVAL)
48 #endif
49
50 /*
51  * this is where the system-wide overflow UID and GID are defined, for
52  * architectures that now have 32-bit UID/GID but didn't in the past
53  */
54
55 int overflowuid = DEFAULT_OVERFLOWUID;
56 int overflowgid = DEFAULT_OVERFLOWGID;
57
58 #ifdef CONFIG_UID16
59 EXPORT_SYMBOL(overflowuid);
60 EXPORT_SYMBOL(overflowgid);
61 #endif
62
63 /*
64  * the same as above, but for filesystems which can only store a 16-bit
65  * UID and GID. as such, this is needed on all architectures
66  */
67
68 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
69 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
70
71 EXPORT_SYMBOL(fs_overflowuid);
72 EXPORT_SYMBOL(fs_overflowgid);
73
74 /*
75  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
76  */
77
78 int C_A_D = 1;
79 int cad_pid = 1;
80
81 /*
82  *      Notifier list for kernel code which wants to be called
83  *      at shutdown. This is used to stop any idling DMA operations
84  *      and the like. 
85  */
86
87 static struct notifier_block *reboot_notifier_list;
88 rwlock_t notifier_lock = RW_LOCK_UNLOCKED;
89
90 /**
91  *      notifier_chain_register - Add notifier to a notifier chain
92  *      @list: Pointer to root list pointer
93  *      @n: New entry in notifier chain
94  *
95  *      Adds a notifier to a notifier chain.
96  *
97  *      Currently always returns zero.
98  */
99  
100 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n)
101 {
102         write_lock(&notifier_lock);
103         while(*list)
104         {
105                 if(n->priority > (*list)->priority)
106                         break;
107                 list= &((*list)->next);
108         }
109         n->next = *list;
110         *list=n;
111         write_unlock(&notifier_lock);
112         return 0;
113 }
114
115 EXPORT_SYMBOL(notifier_chain_register);
116
117 /**
118  *      notifier_chain_unregister - Remove notifier from a notifier chain
119  *      @nl: Pointer to root list pointer
120  *      @n: New entry in notifier chain
121  *
122  *      Removes a notifier from a notifier chain.
123  *
124  *      Returns zero on success, or %-ENOENT on failure.
125  */
126  
127 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n)
128 {
129         write_lock(&notifier_lock);
130         while((*nl)!=NULL)
131         {
132                 if((*nl)==n)
133                 {
134                         *nl=n->next;
135                         write_unlock(&notifier_lock);
136                         return 0;
137                 }
138                 nl=&((*nl)->next);
139         }
140         write_unlock(&notifier_lock);
141         return -ENOENT;
142 }
143
144 EXPORT_SYMBOL(notifier_chain_unregister);
145
146 /**
147  *      notifier_call_chain - Call functions in a notifier chain
148  *      @n: Pointer to root pointer of notifier chain
149  *      @val: Value passed unmodified to notifier function
150  *      @v: Pointer passed unmodified to notifier function
151  *
152  *      Calls each function in a notifier chain in turn.
153  *
154  *      If the return value of the notifier can be and'd
155  *      with %NOTIFY_STOP_MASK, then notifier_call_chain
156  *      will return immediately, with the return value of
157  *      the notifier function which halted execution.
158  *      Otherwise, the return value is the return value
159  *      of the last notifier function called.
160  */
161  
162 int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)
163 {
164         int ret=NOTIFY_DONE;
165         struct notifier_block *nb = *n;
166
167         while(nb)
168         {
169                 ret=nb->notifier_call(nb,val,v);
170                 if(ret&NOTIFY_STOP_MASK)
171                 {
172                         return ret;
173                 }
174                 nb=nb->next;
175         }
176         return ret;
177 }
178
179 EXPORT_SYMBOL(notifier_call_chain);
180
181 /**
182  *      register_reboot_notifier - Register function to be called at reboot time
183  *      @nb: Info about notifier function to be called
184  *
185  *      Registers a function with the list of functions
186  *      to be called at reboot time.
187  *
188  *      Currently always returns zero, as notifier_chain_register
189  *      always returns zero.
190  */
191  
192 int register_reboot_notifier(struct notifier_block * nb)
193 {
194         return notifier_chain_register(&reboot_notifier_list, nb);
195 }
196
197 EXPORT_SYMBOL(register_reboot_notifier);
198
199 /**
200  *      unregister_reboot_notifier - Unregister previously registered reboot notifier
201  *      @nb: Hook to be unregistered
202  *
203  *      Unregisters a previously registered reboot
204  *      notifier function.
205  *
206  *      Returns zero on success, or %-ENOENT on failure.
207  */
208  
209 int unregister_reboot_notifier(struct notifier_block * nb)
210 {
211         return notifier_chain_unregister(&reboot_notifier_list, nb);
212 }
213
214 EXPORT_SYMBOL(unregister_reboot_notifier);
215
216 asmlinkage long sys_ni_syscall(void)
217 {
218         return -ENOSYS;
219 }
220
221 cond_syscall(sys_nfsservctl)
222 cond_syscall(sys_quotactl)
223 cond_syscall(sys_acct)
224 cond_syscall(sys_lookup_dcookie)
225 cond_syscall(sys_swapon)
226 cond_syscall(sys_swapoff)
227 cond_syscall(sys_init_module)
228 cond_syscall(sys_delete_module)
229 cond_syscall(sys_socketpair)
230 cond_syscall(sys_bind)
231 cond_syscall(sys_listen)
232 cond_syscall(sys_accept)
233 cond_syscall(sys_connect)
234 cond_syscall(sys_getsockname)
235 cond_syscall(sys_getpeername)
236 cond_syscall(sys_sendto)
237 cond_syscall(sys_send)
238 cond_syscall(sys_recvfrom)
239 cond_syscall(sys_recv)
240 cond_syscall(sys_socket)
241 cond_syscall(sys_setsockopt)
242 cond_syscall(sys_getsockopt)
243 cond_syscall(sys_shutdown)
244 cond_syscall(sys_sendmsg)
245 cond_syscall(sys_recvmsg)
246 cond_syscall(sys_socketcall)
247 cond_syscall(sys_futex)
248 cond_syscall(compat_sys_futex)
249 cond_syscall(sys_epoll_create)
250 cond_syscall(sys_epoll_ctl)
251 cond_syscall(sys_epoll_wait)
252 cond_syscall(sys_semget)
253 cond_syscall(sys_semop)
254 cond_syscall(sys_semtimedop)
255 cond_syscall(sys_semctl)
256 cond_syscall(sys_msgget)
257 cond_syscall(sys_msgsnd)
258 cond_syscall(sys_msgrcv)
259 cond_syscall(sys_msgctl)
260 cond_syscall(sys_shmget)
261 cond_syscall(sys_shmdt)
262 cond_syscall(sys_shmctl)
263 cond_syscall(sys_mq_open)
264 cond_syscall(sys_mq_unlink)
265 cond_syscall(sys_mq_timedsend)
266 cond_syscall(sys_mq_timedreceive)
267 cond_syscall(sys_mq_notify)
268 cond_syscall(sys_mq_getsetattr)
269 cond_syscall(compat_sys_mq_open)
270 cond_syscall(compat_sys_mq_timedsend)
271 cond_syscall(compat_sys_mq_timedreceive)
272 cond_syscall(compat_sys_mq_notify)
273 cond_syscall(compat_sys_mq_getsetattr)
274 cond_syscall(sys_mbind)
275 cond_syscall(sys_get_mempolicy)
276 cond_syscall(sys_set_mempolicy)
277 cond_syscall(compat_get_mempolicy)
278
279 /* arch-specific weak syscall entries */
280 cond_syscall(sys_pciconfig_read)
281 cond_syscall(sys_pciconfig_write)
282 cond_syscall(sys_pciconfig_iobase)
283
284 static int set_one_prio(struct task_struct *p, int niceval, int error)
285 {
286         int no_nice;
287
288         if (p->uid != current->euid &&
289                 p->uid != current->uid && !capable(CAP_SYS_NICE)) {
290                 error = -EPERM;
291                 goto out;
292         }
293         if (niceval < task_nice(p) && !capable(CAP_SYS_NICE)) {
294                 error = -EACCES;
295                 goto out;
296         }
297         no_nice = security_task_setnice(p, niceval);
298         if (no_nice) {
299                 error = no_nice;
300                 goto out;
301         }
302         if (error == -ESRCH)
303                 error = 0;
304         set_user_nice(p, niceval);
305 out:
306         return error;
307 }
308
309 asmlinkage long sys_setpriority(int which, int who, int niceval)
310 {
311         struct task_struct *g, *p;
312         struct user_struct *user;
313         struct pid *pid;
314         struct list_head *l;
315         int error = -EINVAL;
316
317         if (which > 2 || which < 0)
318                 goto out;
319
320         /* normalize: avoid signed division (rounding problems) */
321         error = -ESRCH;
322         if (niceval < -20)
323                 niceval = -20;
324         if (niceval > 19)
325                 niceval = 19;
326
327         read_lock(&tasklist_lock);
328         switch (which) {
329                 case PRIO_PROCESS:
330                         if (!who)
331                                 who = current->pid;
332                         p = find_task_by_pid(who);
333                         if (p)
334                                 error = set_one_prio(p, niceval, error);
335                         break;
336                 case PRIO_PGRP:
337                         if (!who)
338                                 who = process_group(current);
339                         for_each_task_pid(who, PIDTYPE_PGID, p, l, pid)
340                                 error = set_one_prio(p, niceval, error);
341                         break;
342                 case PRIO_USER:
343                         if (!who)
344                                 user = current->user;
345                         else
346                                 user = find_user(who);
347
348                         if (!user)
349                                 goto out_unlock;
350
351                         do_each_thread(g, p)
352                                 if (p->uid == who)
353                                         error = set_one_prio(p, niceval, error);
354                         while_each_thread(g, p);
355                         if (who)
356                                 free_uid(user);         /* For find_user() */
357                         break;
358         }
359 out_unlock:
360         read_unlock(&tasklist_lock);
361 out:
362         return error;
363 }
364
365 /*
366  * Ugh. To avoid negative return values, "getpriority()" will
367  * not return the normal nice-value, but a negated value that
368  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
369  * to stay compatible.
370  */
371 asmlinkage long sys_getpriority(int which, int who)
372 {
373         struct task_struct *g, *p;
374         struct list_head *l;
375         struct pid *pid;
376         struct user_struct *user;
377         long niceval, retval = -ESRCH;
378
379         if (which > 2 || which < 0)
380                 return -EINVAL;
381
382         read_lock(&tasklist_lock);
383         switch (which) {
384                 case PRIO_PROCESS:
385                         if (!who)
386                                 who = current->pid;
387                         p = find_task_by_pid(who);
388                         if (p) {
389                                 niceval = 20 - task_nice(p);
390                                 if (niceval > retval)
391                                         retval = niceval;
392                         }
393                         break;
394                 case PRIO_PGRP:
395                         if (!who)
396                                 who = process_group(current);
397                         for_each_task_pid(who, PIDTYPE_PGID, p, l, pid) {
398                                 niceval = 20 - task_nice(p);
399                                 if (niceval > retval)
400                                         retval = niceval;
401                         }
402                         break;
403                 case PRIO_USER:
404                         if (!who)
405                                 user = current->user;
406                         else
407                                 user = find_user(who);
408
409                         if (!user)
410                                 goto out_unlock;
411
412                         do_each_thread(g, p)
413                                 if (p->uid == who) {
414                                         niceval = 20 - task_nice(p);
415                                         if (niceval > retval)
416                                                 retval = niceval;
417                                 }
418                         while_each_thread(g, p);
419                         if (who)
420                                 free_uid(user);         /* for find_user() */
421                         break;
422         }
423 out_unlock:
424         read_unlock(&tasklist_lock);
425
426         return retval;
427 }
428
429
430 /*
431  * Reboot system call: for obvious reasons only root may call it,
432  * and even root needs to set up some magic numbers in the registers
433  * so that some mistake won't make this reboot the whole machine.
434  * You can also set the meaning of the ctrl-alt-del-key here.
435  *
436  * reboot doesn't sync: do that yourself before calling this.
437  */
438 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
439 {
440         char buffer[256];
441
442         /* We only trust the superuser with rebooting the system. */
443         if (!capable(CAP_SYS_BOOT))
444                 return -EPERM;
445
446         /* For safety, we require "magic" arguments. */
447         if (magic1 != LINUX_REBOOT_MAGIC1 ||
448             (magic2 != LINUX_REBOOT_MAGIC2 &&
449                         magic2 != LINUX_REBOOT_MAGIC2A &&
450                         magic2 != LINUX_REBOOT_MAGIC2B &&
451                         magic2 != LINUX_REBOOT_MAGIC2C))
452                 return -EINVAL;
453
454         lock_kernel();
455         switch (cmd) {
456         case LINUX_REBOOT_CMD_RESTART:
457                 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
458                 system_state = SYSTEM_RESTART;
459                 device_shutdown();
460                 printk(KERN_EMERG "Restarting system.\n");
461                 machine_restart(NULL);
462                 break;
463
464         case LINUX_REBOOT_CMD_CAD_ON:
465                 C_A_D = 1;
466                 break;
467
468         case LINUX_REBOOT_CMD_CAD_OFF:
469                 C_A_D = 0;
470                 break;
471
472         case LINUX_REBOOT_CMD_HALT:
473                 notifier_call_chain(&reboot_notifier_list, SYS_HALT, NULL);
474                 system_state = SYSTEM_HALT;
475                 device_shutdown();
476                 printk(KERN_EMERG "System halted.\n");
477                 machine_halt();
478                 unlock_kernel();
479                 do_exit(0);
480                 break;
481
482         case LINUX_REBOOT_CMD_POWER_OFF:
483                 notifier_call_chain(&reboot_notifier_list, SYS_POWER_OFF, NULL);
484                 system_state = SYSTEM_POWER_OFF;
485                 device_shutdown();
486                 printk(KERN_EMERG "Power down.\n");
487                 machine_power_off();
488                 unlock_kernel();
489                 do_exit(0);
490                 break;
491
492         case LINUX_REBOOT_CMD_RESTART2:
493                 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
494                         unlock_kernel();
495                         return -EFAULT;
496                 }
497                 buffer[sizeof(buffer) - 1] = '\0';
498
499                 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, buffer);
500                 system_state = SYSTEM_RESTART;
501                 device_shutdown();
502                 printk(KERN_EMERG "Restarting system with command '%s'.\n", buffer);
503                 machine_restart(buffer);
504                 break;
505
506 #ifdef CONFIG_SOFTWARE_SUSPEND
507         case LINUX_REBOOT_CMD_SW_SUSPEND:
508                 {
509                         int ret = software_suspend();
510                         unlock_kernel();
511                         return ret;
512                 }
513 #endif
514
515         default:
516                 unlock_kernel();
517                 return -EINVAL;
518         }
519         unlock_kernel();
520         return 0;
521 }
522
523 static void deferred_cad(void *dummy)
524 {
525         notifier_call_chain(&reboot_notifier_list, SYS_RESTART, NULL);
526         machine_restart(NULL);
527 }
528
529 /*
530  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
531  * As it's called within an interrupt, it may NOT sync: the only choice
532  * is whether to reboot at once, or just ignore the ctrl-alt-del.
533  */
534 void ctrl_alt_del(void)
535 {
536         static DECLARE_WORK(cad_work, deferred_cad, NULL);
537
538         if (C_A_D)
539                 schedule_work(&cad_work);
540         else
541                 kill_proc(cad_pid, SIGINT, 1);
542 }
543         
544
545 /*
546  * Unprivileged users may change the real gid to the effective gid
547  * or vice versa.  (BSD-style)
548  *
549  * If you set the real gid at all, or set the effective gid to a value not
550  * equal to the real gid, then the saved gid is set to the new effective gid.
551  *
552  * This makes it possible for a setgid program to completely drop its
553  * privileges, which is often a useful assertion to make when you are doing
554  * a security audit over a program.
555  *
556  * The general idea is that a program which uses just setregid() will be
557  * 100% compatible with BSD.  A program which uses just setgid() will be
558  * 100% compatible with POSIX with saved IDs. 
559  *
560  * SMP: There are not races, the GIDs are checked only by filesystem
561  *      operations (as far as semantic preservation is concerned).
562  */
563 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
564 {
565         int old_rgid = current->gid;
566         int old_egid = current->egid;
567         int new_rgid = old_rgid;
568         int new_egid = old_egid;
569         int retval;
570
571         retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
572         if (retval)
573                 return retval;
574
575         if (rgid != (gid_t) -1) {
576                 if ((old_rgid == rgid) ||
577                     (current->egid==rgid) ||
578                     capable(CAP_SETGID))
579                         new_rgid = rgid;
580                 else
581                         return -EPERM;
582         }
583         if (egid != (gid_t) -1) {
584                 if ((old_rgid == egid) ||
585                     (current->egid == egid) ||
586                     (current->sgid == egid) ||
587                     capable(CAP_SETGID))
588                         new_egid = egid;
589                 else {
590                         return -EPERM;
591                 }
592         }
593         if (new_egid != old_egid)
594         {
595                 current->mm->dumpable = 0;
596                 wmb();
597         }
598         if (rgid != (gid_t) -1 ||
599             (egid != (gid_t) -1 && egid != old_rgid))
600                 current->sgid = new_egid;
601         current->fsgid = new_egid;
602         current->egid = new_egid;
603         current->gid = new_rgid;
604         return 0;
605 }
606
607 /*
608  * setgid() is implemented like SysV w/ SAVED_IDS 
609  *
610  * SMP: Same implicit races as above.
611  */
612 asmlinkage long sys_setgid(gid_t gid)
613 {
614         int old_egid = current->egid;
615         int retval;
616
617         retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
618         if (retval)
619                 return retval;
620
621         if (capable(CAP_SETGID))
622         {
623                 if(old_egid != gid)
624                 {
625                         current->mm->dumpable=0;
626                         wmb();
627                 }
628                 current->gid = current->egid = current->sgid = current->fsgid = gid;
629         }
630         else if ((gid == current->gid) || (gid == current->sgid))
631         {
632                 if(old_egid != gid)
633                 {
634                         current->mm->dumpable=0;
635                         wmb();
636                 }
637                 current->egid = current->fsgid = gid;
638         }
639         else
640                 return -EPERM;
641         return 0;
642 }
643   
644 static int set_user(uid_t new_ruid, int dumpclear)
645 {
646         struct user_struct *new_user;
647
648         new_user = alloc_uid(new_ruid);
649         if (!new_user)
650                 return -EAGAIN;
651
652         if (atomic_read(&new_user->processes) >=
653                                 current->rlim[RLIMIT_NPROC].rlim_cur &&
654                         new_user != &root_user) {
655                 free_uid(new_user);
656                 return -EAGAIN;
657         }
658
659         switch_uid(new_user);
660
661         if(dumpclear)
662         {
663                 current->mm->dumpable = 0;
664                 wmb();
665         }
666         current->uid = new_ruid;
667         return 0;
668 }
669
670 /*
671  * Unprivileged users may change the real uid to the effective uid
672  * or vice versa.  (BSD-style)
673  *
674  * If you set the real uid at all, or set the effective uid to a value not
675  * equal to the real uid, then the saved uid is set to the new effective uid.
676  *
677  * This makes it possible for a setuid program to completely drop its
678  * privileges, which is often a useful assertion to make when you are doing
679  * a security audit over a program.
680  *
681  * The general idea is that a program which uses just setreuid() will be
682  * 100% compatible with BSD.  A program which uses just setuid() will be
683  * 100% compatible with POSIX with saved IDs. 
684  */
685 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
686 {
687         int old_ruid, old_euid, old_suid, new_ruid, new_euid;
688         int retval;
689
690         retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
691         if (retval)
692                 return retval;
693
694         new_ruid = old_ruid = current->uid;
695         new_euid = old_euid = current->euid;
696         old_suid = current->suid;
697
698         if (ruid != (uid_t) -1) {
699                 new_ruid = ruid;
700                 if ((old_ruid != ruid) &&
701                     (current->euid != ruid) &&
702                     !capable(CAP_SETUID))
703                         return -EPERM;
704         }
705
706         if (euid != (uid_t) -1) {
707                 new_euid = euid;
708                 if ((old_ruid != euid) &&
709                     (current->euid != euid) &&
710                     (current->suid != euid) &&
711                     !capable(CAP_SETUID))
712                         return -EPERM;
713         }
714
715         if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0)
716                 return -EAGAIN;
717
718         if (new_euid != old_euid)
719         {
720                 current->mm->dumpable=0;
721                 wmb();
722         }
723         current->fsuid = current->euid = new_euid;
724         if (ruid != (uid_t) -1 ||
725             (euid != (uid_t) -1 && euid != old_ruid))
726                 current->suid = current->euid;
727         current->fsuid = current->euid;
728
729         return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE);
730 }
731
732
733                 
734 /*
735  * setuid() is implemented like SysV with SAVED_IDS 
736  * 
737  * Note that SAVED_ID's is deficient in that a setuid root program
738  * like sendmail, for example, cannot set its uid to be a normal 
739  * user and then switch back, because if you're root, setuid() sets
740  * the saved uid too.  If you don't like this, blame the bright people
741  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
742  * will allow a root program to temporarily drop privileges and be able to
743  * regain them by swapping the real and effective uid.  
744  */
745 asmlinkage long sys_setuid(uid_t uid)
746 {
747         int old_euid = current->euid;
748         int old_ruid, old_suid, new_ruid, new_suid;
749         int retval;
750
751         retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
752         if (retval)
753                 return retval;
754
755         old_ruid = new_ruid = current->uid;
756         old_suid = current->suid;
757         new_suid = old_suid;
758         
759         if (capable(CAP_SETUID)) {
760                 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0)
761                         return -EAGAIN;
762                 new_suid = uid;
763         } else if ((uid != current->uid) && (uid != new_suid))
764                 return -EPERM;
765
766         if (old_euid != uid)
767         {
768                 current->mm->dumpable = 0;
769                 wmb();
770         }
771         current->fsuid = current->euid = uid;
772         current->suid = new_suid;
773
774         return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID);
775 }
776
777
778 /*
779  * This function implements a generic ability to update ruid, euid,
780  * and suid.  This allows you to implement the 4.4 compatible seteuid().
781  */
782 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
783 {
784         int old_ruid = current->uid;
785         int old_euid = current->euid;
786         int old_suid = current->suid;
787         int retval;
788
789         retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
790         if (retval)
791                 return retval;
792
793         if (!capable(CAP_SETUID)) {
794                 if ((ruid != (uid_t) -1) && (ruid != current->uid) &&
795                     (ruid != current->euid) && (ruid != current->suid))
796                         return -EPERM;
797                 if ((euid != (uid_t) -1) && (euid != current->uid) &&
798                     (euid != current->euid) && (euid != current->suid))
799                         return -EPERM;
800                 if ((suid != (uid_t) -1) && (suid != current->uid) &&
801                     (suid != current->euid) && (suid != current->suid))
802                         return -EPERM;
803         }
804         if (ruid != (uid_t) -1) {
805                 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0)
806                         return -EAGAIN;
807         }
808         if (euid != (uid_t) -1) {
809                 if (euid != current->euid)
810                 {
811                         current->mm->dumpable = 0;
812                         wmb();
813                 }
814                 current->euid = euid;
815         }
816         current->fsuid = current->euid;
817         if (suid != (uid_t) -1)
818                 current->suid = suid;
819
820         return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES);
821 }
822
823 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
824 {
825         int retval;
826
827         if (!(retval = put_user(current->uid, ruid)) &&
828             !(retval = put_user(current->euid, euid)))
829                 retval = put_user(current->suid, suid);
830
831         return retval;
832 }
833
834 /*
835  * Same as above, but for rgid, egid, sgid.
836  */
837 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
838 {
839         int retval;
840
841         retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
842         if (retval)
843                 return retval;
844
845         if (!capable(CAP_SETGID)) {
846                 if ((rgid != (gid_t) -1) && (rgid != current->gid) &&
847                     (rgid != current->egid) && (rgid != current->sgid))
848                         return -EPERM;
849                 if ((egid != (gid_t) -1) && (egid != current->gid) &&
850                     (egid != current->egid) && (egid != current->sgid))
851                         return -EPERM;
852                 if ((sgid != (gid_t) -1) && (sgid != current->gid) &&
853                     (sgid != current->egid) && (sgid != current->sgid))
854                         return -EPERM;
855         }
856         if (egid != (gid_t) -1) {
857                 if (egid != current->egid)
858                 {
859                         current->mm->dumpable = 0;
860                         wmb();
861                 }
862                 current->egid = egid;
863         }
864         current->fsgid = current->egid;
865         if (rgid != (gid_t) -1)
866                 current->gid = rgid;
867         if (sgid != (gid_t) -1)
868                 current->sgid = sgid;
869         return 0;
870 }
871
872 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
873 {
874         int retval;
875
876         if (!(retval = put_user(current->gid, rgid)) &&
877             !(retval = put_user(current->egid, egid)))
878                 retval = put_user(current->sgid, sgid);
879
880         return retval;
881 }
882
883
884 /*
885  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
886  * is used for "access()" and for the NFS daemon (letting nfsd stay at
887  * whatever uid it wants to). It normally shadows "euid", except when
888  * explicitly set by setfsuid() or for access..
889  */
890 asmlinkage long sys_setfsuid(uid_t uid)
891 {
892         int old_fsuid;
893
894         old_fsuid = current->fsuid;
895         if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS))
896                 return old_fsuid;
897
898         if (uid == current->uid || uid == current->euid ||
899             uid == current->suid || uid == current->fsuid || 
900             capable(CAP_SETUID))
901         {
902                 if (uid != old_fsuid)
903                 {
904                         current->mm->dumpable = 0;
905                         wmb();
906                 }
907                 current->fsuid = uid;
908         }
909
910         security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS);
911
912         return old_fsuid;
913 }
914
915 /*
916  * Samma pÃ¥ svenska..
917  */
918 asmlinkage long sys_setfsgid(gid_t gid)
919 {
920         int old_fsgid;
921
922         old_fsgid = current->fsgid;
923         if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
924                 return old_fsgid;
925
926         if (gid == current->gid || gid == current->egid ||
927             gid == current->sgid || gid == current->fsgid || 
928             capable(CAP_SETGID))
929         {
930                 if (gid != old_fsgid)
931                 {
932                         current->mm->dumpable = 0;
933                         wmb();
934                 }
935                 current->fsgid = gid;
936         }
937         return old_fsgid;
938 }
939
940 asmlinkage long sys_times(struct tms __user * tbuf)
941 {
942         /*
943          *      In the SMP world we might just be unlucky and have one of
944          *      the times increment as we use it. Since the value is an
945          *      atomically safe type this is just fine. Conceptually its
946          *      as if the syscall took an instant longer to occur.
947          */
948         if (tbuf) {
949                 struct tms tmp;
950                 tmp.tms_utime = jiffies_to_clock_t(current->utime);
951                 tmp.tms_stime = jiffies_to_clock_t(current->stime);
952                 tmp.tms_cutime = jiffies_to_clock_t(current->cutime);
953                 tmp.tms_cstime = jiffies_to_clock_t(current->cstime);
954                 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
955                         return -EFAULT;
956         }
957         return (long) jiffies_64_to_clock_t(get_jiffies_64());
958 }
959
960 /*
961  * This needs some heavy checking ...
962  * I just haven't the stomach for it. I also don't fully
963  * understand sessions/pgrp etc. Let somebody who does explain it.
964  *
965  * OK, I think I have the protection semantics right.... this is really
966  * only important on a multi-user system anyway, to make sure one user
967  * can't send a signal to a process owned by another.  -TYT, 12/12/91
968  *
969  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
970  * LBT 04.03.94
971  */
972
973 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
974 {
975         struct task_struct *p;
976         int err = -EINVAL;
977
978         if (!pid)
979                 pid = current->pid;
980         if (!pgid)
981                 pgid = pid;
982         if (pgid < 0)
983                 return -EINVAL;
984
985         /* From this point forward we keep holding onto the tasklist lock
986          * so that our parent does not change from under us. -DaveM
987          */
988         write_lock_irq(&tasklist_lock);
989
990         err = -ESRCH;
991         p = find_task_by_pid(pid);
992         if (!p)
993                 goto out;
994
995         err = -EINVAL;
996         if (!thread_group_leader(p))
997                 goto out;
998
999         if (p->parent == current || p->real_parent == current) {
1000                 err = -EPERM;
1001                 if (p->signal->session != current->signal->session)
1002                         goto out;
1003                 err = -EACCES;
1004                 if (p->did_exec)
1005                         goto out;
1006         } else {
1007                 err = -ESRCH;
1008                 if (p != current)
1009                         goto out;
1010         }
1011
1012         err = -EPERM;
1013         if (p->signal->leader)
1014                 goto out;
1015
1016         if (pgid != pid) {
1017                 struct task_struct *p;
1018                 struct pid *pid;
1019                 struct list_head *l;
1020
1021                 for_each_task_pid(pgid, PIDTYPE_PGID, p, l, pid)
1022                         if (p->signal->session == current->signal->session)
1023                                 goto ok_pgid;
1024                 goto out;
1025         }
1026
1027 ok_pgid:
1028         err = security_task_setpgid(p, pgid);
1029         if (err)
1030                 goto out;
1031
1032         if (process_group(p) != pgid) {
1033                 detach_pid(p, PIDTYPE_PGID);
1034                 p->signal->pgrp = pgid;
1035                 attach_pid(p, PIDTYPE_PGID, pgid);
1036         }
1037
1038         err = 0;
1039 out:
1040         /* All paths lead to here, thus we are safe. -DaveM */
1041         write_unlock_irq(&tasklist_lock);
1042         return err;
1043 }
1044
1045 asmlinkage long sys_getpgid(pid_t pid)
1046 {
1047         if (!pid) {
1048                 return process_group(current);
1049         } else {
1050                 int retval;
1051                 struct task_struct *p;
1052
1053                 read_lock(&tasklist_lock);
1054                 p = find_task_by_pid(pid);
1055
1056                 retval = -ESRCH;
1057                 if (p) {
1058                         retval = security_task_getpgid(p);
1059                         if (!retval)
1060                                 retval = process_group(p);
1061                 }
1062                 read_unlock(&tasklist_lock);
1063                 return retval;
1064         }
1065 }
1066
1067 #ifdef __ARCH_WANT_SYS_GETPGRP
1068
1069 asmlinkage long sys_getpgrp(void)
1070 {
1071         /* SMP - assuming writes are word atomic this is fine */
1072         return process_group(current);
1073 }
1074
1075 #endif
1076
1077 asmlinkage long sys_getsid(pid_t pid)
1078 {
1079         if (!pid) {
1080                 return current->signal->session;
1081         } else {
1082                 int retval;
1083                 struct task_struct *p;
1084
1085                 read_lock(&tasklist_lock);
1086                 p = find_task_by_pid(pid);
1087
1088                 retval = -ESRCH;
1089                 if(p) {
1090                         retval = security_task_getsid(p);
1091                         if (!retval)
1092                                 retval = p->signal->session;
1093                 }
1094                 read_unlock(&tasklist_lock);
1095                 return retval;
1096         }
1097 }
1098
1099 asmlinkage long sys_setsid(void)
1100 {
1101         struct pid *pid;
1102         int err = -EPERM;
1103
1104         if (!thread_group_leader(current))
1105                 return -EINVAL;
1106
1107         write_lock_irq(&tasklist_lock);
1108
1109         pid = find_pid(PIDTYPE_PGID, current->pid);
1110         if (pid)
1111                 goto out;
1112
1113         current->signal->leader = 1;
1114         __set_special_pids(current->pid, current->pid);
1115         current->signal->tty = NULL;
1116         current->signal->tty_old_pgrp = 0;
1117         err = process_group(current);
1118 out:
1119         write_unlock_irq(&tasklist_lock);
1120         return err;
1121 }
1122
1123 /*
1124  * Supplementary group IDs
1125  */
1126
1127 /* init to 2 - one for init_task, one to ensure it is never freed */
1128 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1129
1130 struct group_info *groups_alloc(int gidsetsize)
1131 {
1132         struct group_info *group_info;
1133         int nblocks;
1134         int i;
1135
1136         nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1137         /* Make sure we always allocate at least one indirect block pointer */
1138         nblocks = nblocks ? : 1;
1139         group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1140         if (!group_info)
1141                 return NULL;
1142         group_info->ngroups = gidsetsize;
1143         group_info->nblocks = nblocks;
1144         atomic_set(&group_info->usage, 1);
1145
1146         if (gidsetsize <= NGROUPS_SMALL) {
1147                 group_info->blocks[0] = group_info->small_block;
1148         } else {
1149                 for (i = 0; i < nblocks; i++) {
1150                         gid_t *b;
1151                         b = (void *)__get_free_page(GFP_USER);
1152                         if (!b)
1153                                 goto out_undo_partial_alloc;
1154                         group_info->blocks[i] = b;
1155                 }
1156         }
1157         return group_info;
1158
1159 out_undo_partial_alloc:
1160         while (--i >= 0) {
1161                 free_page((unsigned long)group_info->blocks[i]);
1162         }
1163         kfree(group_info);
1164         return NULL;
1165 }
1166
1167 EXPORT_SYMBOL(groups_alloc);
1168
1169 void groups_free(struct group_info *group_info)
1170 {
1171         if (group_info->blocks[0] != group_info->small_block) {
1172                 int i;
1173                 for (i = 0; i < group_info->nblocks; i++)
1174                         free_page((unsigned long)group_info->blocks[i]);
1175         }
1176         kfree(group_info);
1177 }
1178
1179 EXPORT_SYMBOL(groups_free);
1180
1181 /* export the group_info to a user-space array */
1182 static int groups_to_user(gid_t __user *grouplist,
1183     struct group_info *group_info)
1184 {
1185         int i;
1186         int count = group_info->ngroups;
1187
1188         for (i = 0; i < group_info->nblocks; i++) {
1189                 int cp_count = min(NGROUPS_PER_BLOCK, count);
1190                 int off = i * NGROUPS_PER_BLOCK;
1191                 int len = cp_count * sizeof(*grouplist);
1192
1193                 if (copy_to_user(grouplist+off, group_info->blocks[i], len))
1194                         return -EFAULT;
1195
1196                 count -= cp_count;
1197         }
1198         return 0;
1199 }
1200
1201 /* fill a group_info from a user-space array - it must be allocated already */
1202 static int groups_from_user(struct group_info *group_info,
1203     gid_t __user *grouplist)
1204  {
1205         int i;
1206         int count = group_info->ngroups;
1207
1208         for (i = 0; i < group_info->nblocks; i++) {
1209                 int cp_count = min(NGROUPS_PER_BLOCK, count);
1210                 int off = i * NGROUPS_PER_BLOCK;
1211                 int len = cp_count * sizeof(*grouplist);
1212
1213                 if (copy_from_user(group_info->blocks[i], grouplist+off, len))
1214                         return -EFAULT;
1215
1216                 count -= cp_count;
1217         }
1218         return 0;
1219 }
1220
1221 /* a simple shell-metzner sort */
1222 static void groups_sort(struct group_info *group_info)
1223 {
1224         int base, max, stride;
1225         int gidsetsize = group_info->ngroups;
1226
1227         for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1228                 ; /* nothing */
1229         stride /= 3;
1230
1231         while (stride) {
1232                 max = gidsetsize - stride;
1233                 for (base = 0; base < max; base++) {
1234                         int left = base;
1235                         int right = left + stride;
1236                         gid_t tmp = GROUP_AT(group_info, right);
1237
1238                         while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1239                                 GROUP_AT(group_info, right) =
1240                                     GROUP_AT(group_info, left);
1241                                 right = left;
1242                                 left -= stride;
1243                         }
1244                         GROUP_AT(group_info, right) = tmp;
1245                 }
1246                 stride /= 3;
1247         }
1248 }
1249
1250 /* a simple bsearch */
1251 static int groups_search(struct group_info *group_info, gid_t grp)
1252 {
1253         int left, right;
1254
1255         if (!group_info)
1256                 return 0;
1257
1258         left = 0;
1259         right = group_info->ngroups;
1260         while (left < right) {
1261                 int mid = (left+right)/2;
1262                 int cmp = grp - GROUP_AT(group_info, mid);
1263                 if (cmp > 0)
1264                         left = mid + 1;
1265                 else if (cmp < 0)
1266                         right = mid;
1267                 else
1268                         return 1;
1269         }
1270         return 0;
1271 }
1272
1273 /* validate and set current->group_info */
1274 int set_current_groups(struct group_info *group_info)
1275 {
1276         int retval;
1277         struct group_info *old_info;
1278
1279         retval = security_task_setgroups(group_info);
1280         if (retval)
1281                 return retval;
1282
1283         groups_sort(group_info);
1284         get_group_info(group_info);
1285
1286         task_lock(current);
1287         old_info = current->group_info;
1288         current->group_info = group_info;
1289         task_unlock(current);
1290
1291         put_group_info(old_info);
1292
1293         return 0;
1294 }
1295
1296 EXPORT_SYMBOL(set_current_groups);
1297
1298 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1299 {
1300         int i = 0;
1301
1302         /*
1303          *      SMP: Nobody else can change our grouplist. Thus we are
1304          *      safe.
1305          */
1306
1307         if (gidsetsize < 0)
1308                 return -EINVAL;
1309
1310         /* no need to grab task_lock here; it cannot change */
1311         get_group_info(current->group_info);
1312         i = current->group_info->ngroups;
1313         if (gidsetsize) {
1314                 if (i > gidsetsize) {
1315                         i = -EINVAL;
1316                         goto out;
1317                 }
1318                 if (groups_to_user(grouplist, current->group_info)) {
1319                         i = -EFAULT;
1320                         goto out;
1321                 }
1322         }
1323 out:
1324         put_group_info(current->group_info);
1325         return i;
1326 }
1327
1328 /*
1329  *      SMP: Our groups are copy-on-write. We can set them safely
1330  *      without another task interfering.
1331  */
1332  
1333 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1334 {
1335         struct group_info *group_info;
1336         int retval;
1337
1338         if (!capable(CAP_SETGID))
1339                 return -EPERM;
1340         if ((unsigned)gidsetsize > NGROUPS_MAX)
1341                 return -EINVAL;
1342
1343         group_info = groups_alloc(gidsetsize);
1344         if (!group_info)
1345                 return -ENOMEM;
1346         retval = groups_from_user(group_info, grouplist);
1347         if (retval) {
1348                 put_group_info(group_info);
1349                 return retval;
1350         }
1351
1352         retval = set_current_groups(group_info);
1353         put_group_info(group_info);
1354
1355         return retval;
1356 }
1357
1358 /*
1359  * Check whether we're fsgid/egid or in the supplemental group..
1360  */
1361 int in_group_p(gid_t grp)
1362 {
1363         int retval = 1;
1364         if (grp != current->fsgid) {
1365                 get_group_info(current->group_info);
1366                 retval = groups_search(current->group_info, grp);
1367                 put_group_info(current->group_info);
1368         }
1369         return retval;
1370 }
1371
1372 EXPORT_SYMBOL(in_group_p);
1373
1374 int in_egroup_p(gid_t grp)
1375 {
1376         int retval = 1;
1377         if (grp != current->egid) {
1378                 get_group_info(current->group_info);
1379                 retval = groups_search(current->group_info, grp);
1380                 put_group_info(current->group_info);
1381         }
1382         return retval;
1383 }
1384
1385 EXPORT_SYMBOL(in_egroup_p);
1386
1387 DECLARE_RWSEM(uts_sem);
1388
1389 EXPORT_SYMBOL(uts_sem);
1390
1391 asmlinkage long sys_newuname(struct new_utsname __user * name)
1392 {
1393         int errno = 0;
1394
1395         down_read(&uts_sem);
1396         if (copy_to_user(name,&system_utsname,sizeof *name))
1397                 errno = -EFAULT;
1398         up_read(&uts_sem);
1399         return errno;
1400 }
1401
1402 asmlinkage long sys_sethostname(char __user *name, int len)
1403 {
1404         int errno;
1405         char tmp[__NEW_UTS_LEN];
1406
1407         if (!capable(CAP_SYS_ADMIN))
1408                 return -EPERM;
1409         if (len < 0 || len > __NEW_UTS_LEN)
1410                 return -EINVAL;
1411         down_write(&uts_sem);
1412         errno = -EFAULT;
1413         if (!copy_from_user(tmp, name, len)) {
1414                 memcpy(system_utsname.nodename, tmp, len);
1415                 system_utsname.nodename[len] = 0;
1416                 errno = 0;
1417         }
1418         up_write(&uts_sem);
1419         return errno;
1420 }
1421
1422 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1423
1424 asmlinkage long sys_gethostname(char __user *name, int len)
1425 {
1426         int i, errno;
1427
1428         if (len < 0)
1429                 return -EINVAL;
1430         down_read(&uts_sem);
1431         i = 1 + strlen(system_utsname.nodename);
1432         if (i > len)
1433                 i = len;
1434         errno = 0;
1435         if (copy_to_user(name, system_utsname.nodename, i))
1436                 errno = -EFAULT;
1437         up_read(&uts_sem);
1438         return errno;
1439 }
1440
1441 #endif
1442
1443 /*
1444  * Only setdomainname; getdomainname can be implemented by calling
1445  * uname()
1446  */
1447 asmlinkage long sys_setdomainname(char __user *name, int len)
1448 {
1449         int errno;
1450         char tmp[__NEW_UTS_LEN];
1451
1452         if (!capable(CAP_SYS_ADMIN))
1453                 return -EPERM;
1454         if (len < 0 || len > __NEW_UTS_LEN)
1455                 return -EINVAL;
1456
1457         down_write(&uts_sem);
1458         errno = -EFAULT;
1459         if (!copy_from_user(tmp, name, len)) {
1460                 memcpy(system_utsname.domainname, tmp, len);
1461                 system_utsname.domainname[len] = 0;
1462                 errno = 0;
1463         }
1464         up_write(&uts_sem);
1465         return errno;
1466 }
1467
1468 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1469 {
1470         if (resource >= RLIM_NLIMITS)
1471                 return -EINVAL;
1472         else
1473                 return copy_to_user(rlim, current->rlim + resource, sizeof(*rlim))
1474                         ? -EFAULT : 0;
1475 }
1476
1477 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1478
1479 /*
1480  *      Back compatibility for getrlimit. Needed for some apps.
1481  */
1482  
1483 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1484 {
1485         struct rlimit x;
1486         if (resource >= RLIM_NLIMITS)
1487                 return -EINVAL;
1488
1489         memcpy(&x, current->rlim + resource, sizeof(*rlim));
1490         if(x.rlim_cur > 0x7FFFFFFF)
1491                 x.rlim_cur = 0x7FFFFFFF;
1492         if(x.rlim_max > 0x7FFFFFFF)
1493                 x.rlim_max = 0x7FFFFFFF;
1494         return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1495 }
1496
1497 #endif
1498
1499 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1500 {
1501         struct rlimit new_rlim, *old_rlim;
1502         int retval;
1503
1504         if (resource >= RLIM_NLIMITS)
1505                 return -EINVAL;
1506         if(copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1507                 return -EFAULT;
1508        if (new_rlim.rlim_cur > new_rlim.rlim_max)
1509                return -EINVAL;
1510         old_rlim = current->rlim + resource;
1511         if (((new_rlim.rlim_cur > old_rlim->rlim_max) ||
1512              (new_rlim.rlim_max > old_rlim->rlim_max)) &&
1513             !capable(CAP_SYS_RESOURCE))
1514                 return -EPERM;
1515         if (resource == RLIMIT_NOFILE) {
1516                 if (new_rlim.rlim_cur > NR_OPEN || new_rlim.rlim_max > NR_OPEN)
1517                         return -EPERM;
1518         }
1519
1520         retval = security_task_setrlimit(resource, &new_rlim);
1521         if (retval)
1522                 return retval;
1523
1524         *old_rlim = new_rlim;
1525         return 0;
1526 }
1527
1528 /*
1529  * It would make sense to put struct rusage in the task_struct,
1530  * except that would make the task_struct be *really big*.  After
1531  * task_struct gets moved into malloc'ed memory, it would
1532  * make sense to do this.  It will make moving the rest of the information
1533  * a lot simpler!  (Which we're not doing right now because we're not
1534  * measuring them yet).
1535  *
1536  * This is SMP safe.  Either we are called from sys_getrusage on ourselves
1537  * below (we know we aren't going to exit/disappear and only we change our
1538  * rusage counters), or we are called from wait4() on a process which is
1539  * either stopped or zombied.  In the zombied case the task won't get
1540  * reaped till shortly after the call to getrusage(), in both cases the
1541  * task being examined is in a frozen state so the counters won't change.
1542  */
1543 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1544 {
1545         struct rusage r;
1546
1547         memset((char *) &r, 0, sizeof(r));
1548         switch (who) {
1549                 case RUSAGE_SELF:
1550                         jiffies_to_timeval(p->utime, &r.ru_utime);
1551                         jiffies_to_timeval(p->stime, &r.ru_stime);
1552                         r.ru_nvcsw = p->nvcsw;
1553                         r.ru_nivcsw = p->nivcsw;
1554                         r.ru_minflt = p->min_flt;
1555                         r.ru_majflt = p->maj_flt;
1556                         break;
1557                 case RUSAGE_CHILDREN:
1558                         jiffies_to_timeval(p->cutime, &r.ru_utime);
1559                         jiffies_to_timeval(p->cstime, &r.ru_stime);
1560                         r.ru_nvcsw = p->cnvcsw;
1561                         r.ru_nivcsw = p->cnivcsw;
1562                         r.ru_minflt = p->cmin_flt;
1563                         r.ru_majflt = p->cmaj_flt;
1564                         break;
1565                 default:
1566                         jiffies_to_timeval(p->utime + p->cutime, &r.ru_utime);
1567                         jiffies_to_timeval(p->stime + p->cstime, &r.ru_stime);
1568                         r.ru_nvcsw = p->nvcsw + p->cnvcsw;
1569                         r.ru_nivcsw = p->nivcsw + p->cnivcsw;
1570                         r.ru_minflt = p->min_flt + p->cmin_flt;
1571                         r.ru_majflt = p->maj_flt + p->cmaj_flt;
1572                         break;
1573         }
1574         return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1575 }
1576
1577 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1578 {
1579         if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
1580                 return -EINVAL;
1581         return getrusage(current, who, ru);
1582 }
1583
1584 asmlinkage long sys_umask(int mask)
1585 {
1586         mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1587         return mask;
1588 }
1589     
1590 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1591                           unsigned long arg4, unsigned long arg5)
1592 {
1593         int error;
1594         int sig;
1595
1596         error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1597         if (error)
1598                 return error;
1599
1600         switch (option) {
1601                 case PR_SET_PDEATHSIG:
1602                         sig = arg2;
1603                         if (sig < 0 || sig > _NSIG) {
1604                                 error = -EINVAL;
1605                                 break;
1606                         }
1607                         current->pdeath_signal = sig;
1608                         break;
1609                 case PR_GET_PDEATHSIG:
1610                         error = put_user(current->pdeath_signal, (int __user *)arg2);
1611                         break;
1612                 case PR_GET_DUMPABLE:
1613                         if (current->mm->dumpable)
1614                                 error = 1;
1615                         break;
1616                 case PR_SET_DUMPABLE:
1617                         if (arg2 != 0 && arg2 != 1) {
1618                                 error = -EINVAL;
1619                                 break;
1620                         }
1621                         current->mm->dumpable = arg2;
1622                         break;
1623
1624                 case PR_SET_UNALIGN:
1625                         error = SET_UNALIGN_CTL(current, arg2);
1626                         break;
1627                 case PR_GET_UNALIGN:
1628                         error = GET_UNALIGN_CTL(current, arg2);
1629                         break;
1630                 case PR_SET_FPEMU:
1631                         error = SET_FPEMU_CTL(current, arg2);
1632                         break;
1633                 case PR_GET_FPEMU:
1634                         error = GET_FPEMU_CTL(current, arg2);
1635                         break;
1636                 case PR_SET_FPEXC:
1637                         error = SET_FPEXC_CTL(current, arg2);
1638                         break;
1639                 case PR_GET_FPEXC:
1640                         error = GET_FPEXC_CTL(current, arg2);
1641                         break;
1642                 case PR_GET_TIMING:
1643                         error = PR_TIMING_STATISTICAL;
1644                         break;
1645                 case PR_SET_TIMING:
1646                         if (arg2 == PR_TIMING_STATISTICAL)
1647                                 error = 0;
1648                         else
1649                                 error = -EINVAL;
1650                         break;
1651
1652                 case PR_GET_KEEPCAPS:
1653                         if (current->keep_capabilities)
1654                                 error = 1;
1655                         break;
1656                 case PR_SET_KEEPCAPS:
1657                         if (arg2 != 0 && arg2 != 1) {
1658                                 error = -EINVAL;
1659                                 break;
1660                         }
1661                         current->keep_capabilities = arg2;
1662                         break;
1663                 default:
1664                         error = -EINVAL;
1665                         break;
1666         }
1667         return error;
1668 }