e739c064ea0cf194c51e3eb97f5558cf3680b41c
[linux-2.4.git] / highmem.c
1 /*
2  * High memory handling common code and variables.
3  *
4  * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
5  *          Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
6  *
7  *
8  * Redesigned the x86 32-bit VM architecture to deal with
9  * 64-bit physical space. With current x86 CPUs this
10  * means up to 64 Gigabytes physical RAM.
11  *
12  * Rewrote high memory support to move the page cache into
13  * high memory. Implemented permanent (schedulable) kmaps
14  * based on Linus' idea.
15  *
16  * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
17  */
18
19 #include <linux/mm.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/swap.h>
23 #include <linux/slab.h>
24
25 /*
26  * Virtual_count is not a pure "count".
27  *  0 means that it is not mapped, and has not been mapped
28  *    since a TLB flush - it is usable.
29  *  1 means that there are no users, but it has been mapped
30  *    since the last TLB flush - so we can't use it.
31  *  n means that there are (n-1) current users of it.
32  */
33 static int pkmap_count[LAST_PKMAP];
34 static unsigned int last_pkmap_nr;
35 static spinlock_cacheline_t kmap_lock_cacheline = {SPIN_LOCK_UNLOCKED};
36 #define kmap_lock  kmap_lock_cacheline.lock
37
38 pte_t * pkmap_page_table;
39
40 static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
41
42 static void flush_all_zero_pkmaps(void)
43 {
44         int i;
45
46         flush_cache_all();
47
48         for (i = 0; i < LAST_PKMAP; i++) {
49                 struct page *page;
50
51                 /*
52                  * zero means we don't have anything to do,
53                  * >1 means that it is still in use. Only
54                  * a count of 1 means that it is free but
55                  * needs to be unmapped
56                  */
57                 if (pkmap_count[i] != 1)
58                         continue;
59                 pkmap_count[i] = 0;
60
61                 /* sanity check */
62                 if (pte_none(pkmap_page_table[i]))
63                         BUG();
64
65                 /*
66                  * Don't need an atomic fetch-and-clear op here;
67                  * no-one has the page mapped, and cannot get at
68                  * its virtual address (and hence PTE) without first
69                  * getting the kmap_lock (which is held here).
70                  * So no dangers, even with speculative execution.
71                  */
72                 page = pte_page(pkmap_page_table[i]);
73                 pte_clear(&pkmap_page_table[i]);
74
75                 page->virtual = NULL;
76         }
77         flush_tlb_all();
78 }
79
80 static inline unsigned long map_new_virtual(struct page *page, int nonblocking)
81 {
82         unsigned long vaddr;
83         int count;
84
85 start:
86         count = LAST_PKMAP;
87         /* Find an empty entry */
88         for (;;) {
89                 last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
90                 if (!last_pkmap_nr) {
91                         flush_all_zero_pkmaps();
92                         count = LAST_PKMAP;
93                 }
94                 if (!pkmap_count[last_pkmap_nr])
95                         break;  /* Found a usable entry */
96                 if (--count)
97                         continue;
98
99                 if (nonblocking)
100                         return 0;
101
102                 /*
103                  * Sleep for somebody else to unmap their entries
104                  */
105                 {
106                         DECLARE_WAITQUEUE(wait, current);
107
108                         current->state = TASK_UNINTERRUPTIBLE;
109                         add_wait_queue(&pkmap_map_wait, &wait);
110                         spin_unlock(&kmap_lock);
111                         schedule();
112                         remove_wait_queue(&pkmap_map_wait, &wait);
113                         spin_lock(&kmap_lock);
114
115                         /* Somebody else might have mapped it while we slept */
116                         if (page->virtual)
117                                 return (unsigned long) page->virtual;
118
119                         /* Re-start */
120                         goto start;
121                 }
122         }
123         vaddr = PKMAP_ADDR(last_pkmap_nr);
124         set_pte(&(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
125
126         pkmap_count[last_pkmap_nr] = 1;
127         page->virtual = (void *) vaddr;
128
129         return vaddr;
130 }
131
132 void fastcall *kmap_high(struct page *page, int nonblocking)
133 {
134         unsigned long vaddr;
135
136         /*
137          * For highmem pages, we can't trust "virtual" until
138          * after we have the lock.
139          *
140          * We cannot call this from interrupts, as it may block
141          */
142         spin_lock(&kmap_lock);
143         vaddr = (unsigned long) page->virtual;
144         if (!vaddr) {
145                 vaddr = map_new_virtual(page, nonblocking);
146                 if (!vaddr)
147                         goto out;
148         }
149         pkmap_count[PKMAP_NR(vaddr)]++;
150         if (pkmap_count[PKMAP_NR(vaddr)] < 2)
151                 BUG();
152  out:
153         spin_unlock(&kmap_lock);
154         return (void*) vaddr;
155 }
156
157 void fastcall kunmap_high(struct page *page)
158 {
159         unsigned long vaddr;
160         unsigned long nr;
161         int need_wakeup;
162
163         spin_lock(&kmap_lock);
164         vaddr = (unsigned long) page->virtual;
165         if (!vaddr)
166                 BUG();
167         nr = PKMAP_NR(vaddr);
168
169         /*
170          * A count must never go down to zero
171          * without a TLB flush!
172          */
173         need_wakeup = 0;
174         switch (--pkmap_count[nr]) {
175         case 0:
176                 BUG();
177         case 1:
178                 /*
179                  * Avoid an unnecessary wake_up() function call.
180                  * The common case is pkmap_count[] == 1, but
181                  * no waiters.
182                  * The tasks queued in the wait-queue are guarded
183                  * by both the lock in the wait-queue-head and by
184                  * the kmap_lock.  As the kmap_lock is held here,
185                  * no need for the wait-queue-head's lock.  Simply
186                  * test if the queue is empty.
187                  */
188                 need_wakeup = waitqueue_active(&pkmap_map_wait);
189         }
190         spin_unlock(&kmap_lock);
191
192         /* do wake-up, if needed, race-free outside of the spin lock */
193         if (need_wakeup)
194                 wake_up(&pkmap_map_wait);
195 }
196
197 #define POOL_SIZE 32
198
199 /*
200  * This lock gets no contention at all, normally.
201  */
202 static spinlock_t emergency_lock = SPIN_LOCK_UNLOCKED;
203
204 int nr_emergency_pages;
205 static LIST_HEAD(emergency_pages);
206
207 int nr_emergency_bhs;
208 static LIST_HEAD(emergency_bhs);
209
210 /*
211  * Simple bounce buffer support for highmem pages.
212  * This will be moved to the block layer in 2.5.
213  */
214
215 static inline void copy_from_high_bh (struct buffer_head *to,
216                          struct buffer_head *from)
217 {
218         struct page *p_from;
219         char *vfrom;
220
221         p_from = from->b_page;
222
223         vfrom = kmap_atomic(p_from, KM_USER0);
224         memcpy(to->b_data, vfrom + bh_offset(from), to->b_size);
225         kunmap_atomic(vfrom, KM_USER0);
226 }
227
228 static inline void copy_to_high_bh_irq (struct buffer_head *to,
229                          struct buffer_head *from)
230 {
231         struct page *p_to;
232         char *vto;
233         unsigned long flags;
234
235         p_to = to->b_page;
236         __save_flags(flags);
237         __cli();
238         vto = kmap_atomic(p_to, KM_BOUNCE_READ);
239         memcpy(vto + bh_offset(to), from->b_data, to->b_size);
240         kunmap_atomic(vto, KM_BOUNCE_READ);
241         __restore_flags(flags);
242 }
243
244 static inline void bounce_end_io (struct buffer_head *bh, int uptodate)
245 {
246         struct page *page;
247         struct buffer_head *bh_orig = (struct buffer_head *)(bh->b_private);
248         unsigned long flags;
249
250         bh_orig->b_end_io(bh_orig, uptodate);
251
252         page = bh->b_page;
253
254         spin_lock_irqsave(&emergency_lock, flags);
255         if (nr_emergency_pages >= POOL_SIZE)
256                 __free_page(page);
257         else {
258                 /*
259                  * We are abusing page->list to manage
260                  * the highmem emergency pool:
261                  */
262                 list_add(&page->list, &emergency_pages);
263                 nr_emergency_pages++;
264         }
265         
266         if (nr_emergency_bhs >= POOL_SIZE) {
267 #ifdef HIGHMEM_DEBUG
268                 /* Don't clobber the constructed slab cache */
269                 init_waitqueue_head(&bh->b_wait);
270 #endif
271                 kmem_cache_free(bh_cachep, bh);
272         } else {
273                 /*
274                  * Ditto in the bh case, here we abuse b_inode_buffers:
275                  */
276                 list_add(&bh->b_inode_buffers, &emergency_bhs);
277                 nr_emergency_bhs++;
278         }
279         spin_unlock_irqrestore(&emergency_lock, flags);
280 }
281
282 static __init int init_emergency_pool(void)
283 {
284         struct sysinfo i;
285         si_meminfo(&i);
286         si_swapinfo(&i);
287         
288         if (!i.totalhigh)
289                 return 0;
290
291         spin_lock_irq(&emergency_lock);
292         while (nr_emergency_pages < POOL_SIZE) {
293                 struct page * page = alloc_page(GFP_ATOMIC);
294                 if (!page) {
295                         printk("couldn't refill highmem emergency pages");
296                         break;
297                 }
298                 list_add(&page->list, &emergency_pages);
299                 nr_emergency_pages++;
300         }
301         while (nr_emergency_bhs < POOL_SIZE) {
302                 struct buffer_head * bh = kmem_cache_alloc(bh_cachep, SLAB_ATOMIC);
303                 if (!bh) {
304                         printk("couldn't refill highmem emergency bhs");
305                         break;
306                 }
307                 list_add(&bh->b_inode_buffers, &emergency_bhs);
308                 nr_emergency_bhs++;
309         }
310         spin_unlock_irq(&emergency_lock);
311         printk("allocated %d pages and %d bhs reserved for the highmem bounces\n",
312                nr_emergency_pages, nr_emergency_bhs);
313
314         return 0;
315 }
316
317 __initcall(init_emergency_pool);
318
319 static void bounce_end_io_write (struct buffer_head *bh, int uptodate)
320 {
321         bounce_end_io(bh, uptodate);
322 }
323
324 static void bounce_end_io_read (struct buffer_head *bh, int uptodate)
325 {
326         struct buffer_head *bh_orig = (struct buffer_head *)(bh->b_private);
327
328         if (uptodate)
329                 copy_to_high_bh_irq(bh_orig, bh);
330         bounce_end_io(bh, uptodate);
331 }
332
333 struct page *alloc_bounce_page (void)
334 {
335         struct list_head *tmp;
336         struct page *page;
337
338         page = alloc_page(GFP_NOHIGHIO);
339         if (page)
340                 return page;
341         /*
342          * No luck. First, kick the VM so it doesn't idle around while
343          * we are using up our emergency rations.
344          */
345         wakeup_bdflush();
346
347 repeat_alloc:
348         /*
349          * Try to allocate from the emergency pool.
350          */
351         tmp = &emergency_pages;
352         spin_lock_irq(&emergency_lock);
353         if (!list_empty(tmp)) {
354                 page = list_entry(tmp->next, struct page, list);
355                 list_del(tmp->next);
356                 nr_emergency_pages--;
357         }
358         spin_unlock_irq(&emergency_lock);
359         if (page)
360                 return page;
361
362         /* we need to wait I/O completion */
363         run_task_queue(&tq_disk);
364
365         yield();
366         goto repeat_alloc;
367 }
368
369 struct buffer_head *alloc_bounce_bh (void)
370 {
371         struct list_head *tmp;
372         struct buffer_head *bh;
373
374         bh = kmem_cache_alloc(bh_cachep, SLAB_NOHIGHIO);
375         if (bh)
376                 return bh;
377         /*
378          * No luck. First, kick the VM so it doesn't idle around while
379          * we are using up our emergency rations.
380          */
381         wakeup_bdflush();
382
383 repeat_alloc:
384         /*
385          * Try to allocate from the emergency pool.
386          */
387         tmp = &emergency_bhs;
388         spin_lock_irq(&emergency_lock);
389         if (!list_empty(tmp)) {
390                 bh = list_entry(tmp->next, struct buffer_head, b_inode_buffers);
391                 list_del(tmp->next);
392                 nr_emergency_bhs--;
393         }
394         spin_unlock_irq(&emergency_lock);
395         if (bh)
396                 return bh;
397
398         /* we need to wait I/O completion */
399         run_task_queue(&tq_disk);
400
401         yield();
402         goto repeat_alloc;
403 }
404
405 struct buffer_head * create_bounce(int rw, struct buffer_head * bh_orig)
406 {
407         struct page *page;
408         struct buffer_head *bh;
409
410         if (!PageHighMem(bh_orig->b_page))
411                 return bh_orig;
412
413         bh = alloc_bounce_bh();
414         /*
415          * This is wasteful for 1k buffers, but this is a stopgap measure
416          * and we are being ineffective anyway. This approach simplifies
417          * things immensly. On boxes with more than 4GB RAM this should
418          * not be an issue anyway.
419          */
420         page = alloc_bounce_page();
421
422         set_bh_page(bh, page, 0);
423
424         bh->b_next = NULL;
425         bh->b_blocknr = bh_orig->b_blocknr;
426         bh->b_size = bh_orig->b_size;
427         bh->b_list = -1;
428         bh->b_dev = bh_orig->b_dev;
429         bh->b_count = bh_orig->b_count;
430         bh->b_rdev = bh_orig->b_rdev;
431         bh->b_state = bh_orig->b_state;
432 #ifdef HIGHMEM_DEBUG
433         bh->b_flushtime = jiffies;
434         bh->b_next_free = NULL;
435         bh->b_prev_free = NULL;
436         /* bh->b_this_page */
437         bh->b_reqnext = NULL;
438         bh->b_pprev = NULL;
439 #endif
440         /* bh->b_page */
441         if (rw == WRITE) {
442                 bh->b_end_io = bounce_end_io_write;
443                 copy_from_high_bh(bh, bh_orig);
444         } else
445                 bh->b_end_io = bounce_end_io_read;
446         bh->b_private = (void *)bh_orig;
447         bh->b_rsector = bh_orig->b_rsector;
448 #ifdef HIGHMEM_DEBUG
449         memset(&bh->b_wait, -1, sizeof(bh->b_wait));
450 #endif
451
452         return bh;
453 }
454