proc: commit to genradix
[linux] / fs / proc / base.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/proc/base.c
4  *
5  *  Copyright (C) 1991, 1992 Linus Torvalds
6  *
7  *  proc base directory handling functions
8  *
9  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10  *  Instead of using magical inumbers to determine the kind of object
11  *  we allocate and fill in-core inodes upon lookup. They don't even
12  *  go into icache. We cache the reference to task_struct upon lookup too.
13  *  Eventually it should become a filesystem in its own. We don't use the
14  *  rest of procfs anymore.
15  *
16  *
17  *  Changelog:
18  *  17-Jan-2005
19  *  Allan Bezerra
20  *  Bruna Moreira <bruna.moreira@indt.org.br>
21  *  Edjard Mota <edjard.mota@indt.org.br>
22  *  Ilias Biris <ilias.biris@indt.org.br>
23  *  Mauricio Lin <mauricio.lin@indt.org.br>
24  *
25  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26  *
27  *  A new process specific entry (smaps) included in /proc. It shows the
28  *  size of rss for each memory area. The maps entry lacks information
29  *  about physical memory size (rss) for each mapped file, i.e.,
30  *  rss information for executables and library files.
31  *  This additional information is useful for any tools that need to know
32  *  about physical memory consumption for a process specific library.
33  *
34  *  Changelog:
35  *  21-Feb-2005
36  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37  *  Pud inclusion in the page table walking.
38  *
39  *  ChangeLog:
40  *  10-Mar-2005
41  *  10LE Instituto Nokia de Tecnologia - INdT:
42  *  A better way to walks through the page table as suggested by Hugh Dickins.
43  *
44  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
45  *  Smaps information related to shared, private, clean and dirty pages.
46  *
47  *  Paul Mundt <paul.mundt@nokia.com>:
48  *  Overall revision about smaps.
49  */
50
51 #include <linux/uaccess.h>
52
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/generic-radix-tree.h>
63 #include <linux/string.h>
64 #include <linux/seq_file.h>
65 #include <linux/namei.h>
66 #include <linux/mnt_namespace.h>
67 #include <linux/mm.h>
68 #include <linux/swap.h>
69 #include <linux/rcupdate.h>
70 #include <linux/kallsyms.h>
71 #include <linux/stacktrace.h>
72 #include <linux/resource.h>
73 #include <linux/module.h>
74 #include <linux/mount.h>
75 #include <linux/security.h>
76 #include <linux/ptrace.h>
77 #include <linux/tracehook.h>
78 #include <linux/printk.h>
79 #include <linux/cache.h>
80 #include <linux/cgroup.h>
81 #include <linux/cpuset.h>
82 #include <linux/audit.h>
83 #include <linux/poll.h>
84 #include <linux/nsproxy.h>
85 #include <linux/oom.h>
86 #include <linux/elf.h>
87 #include <linux/pid_namespace.h>
88 #include <linux/user_namespace.h>
89 #include <linux/fs_struct.h>
90 #include <linux/slab.h>
91 #include <linux/sched/autogroup.h>
92 #include <linux/sched/mm.h>
93 #include <linux/sched/coredump.h>
94 #include <linux/sched/debug.h>
95 #include <linux/sched/stat.h>
96 #include <linux/posix-timers.h>
97 #include <trace/events/oom.h>
98 #include "internal.h"
99 #include "fd.h"
100
101 #include "../../lib/kstrtox.h"
102
103 /* NOTE:
104  *      Implementing inode permission operations in /proc is almost
105  *      certainly an error.  Permission checks need to happen during
106  *      each system call not at open time.  The reason is that most of
107  *      what we wish to check for permissions in /proc varies at runtime.
108  *
109  *      The classic example of a problem is opening file descriptors
110  *      in /proc for a task before it execs a suid executable.
111  */
112
113 static u8 nlink_tid __ro_after_init;
114 static u8 nlink_tgid __ro_after_init;
115
116 struct pid_entry {
117         const char *name;
118         unsigned int len;
119         umode_t mode;
120         const struct inode_operations *iop;
121         const struct file_operations *fop;
122         union proc_op op;
123 };
124
125 #define NOD(NAME, MODE, IOP, FOP, OP) {                 \
126         .name = (NAME),                                 \
127         .len  = sizeof(NAME) - 1,                       \
128         .mode = MODE,                                   \
129         .iop  = IOP,                                    \
130         .fop  = FOP,                                    \
131         .op   = OP,                                     \
132 }
133
134 #define DIR(NAME, MODE, iops, fops)     \
135         NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
136 #define LNK(NAME, get_link)                                     \
137         NOD(NAME, (S_IFLNK|S_IRWXUGO),                          \
138                 &proc_pid_link_inode_operations, NULL,          \
139                 { .proc_get_link = get_link } )
140 #define REG(NAME, MODE, fops)                           \
141         NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
142 #define ONE(NAME, MODE, show)                           \
143         NOD(NAME, (S_IFREG|(MODE)),                     \
144                 NULL, &proc_single_file_operations,     \
145                 { .proc_show = show } )
146 #define ATTR(LSM, NAME, MODE)                           \
147         NOD(NAME, (S_IFREG|(MODE)),                     \
148                 NULL, &proc_pid_attr_operations,        \
149                 { .lsm = LSM })
150
151 /*
152  * Count the number of hardlinks for the pid_entry table, excluding the .
153  * and .. links.
154  */
155 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
156         unsigned int n)
157 {
158         unsigned int i;
159         unsigned int count;
160
161         count = 2;
162         for (i = 0; i < n; ++i) {
163                 if (S_ISDIR(entries[i].mode))
164                         ++count;
165         }
166
167         return count;
168 }
169
170 static int get_task_root(struct task_struct *task, struct path *root)
171 {
172         int result = -ENOENT;
173
174         task_lock(task);
175         if (task->fs) {
176                 get_fs_root(task->fs, root);
177                 result = 0;
178         }
179         task_unlock(task);
180         return result;
181 }
182
183 static int proc_cwd_link(struct dentry *dentry, struct path *path)
184 {
185         struct task_struct *task = get_proc_task(d_inode(dentry));
186         int result = -ENOENT;
187
188         if (task) {
189                 task_lock(task);
190                 if (task->fs) {
191                         get_fs_pwd(task->fs, path);
192                         result = 0;
193                 }
194                 task_unlock(task);
195                 put_task_struct(task);
196         }
197         return result;
198 }
199
200 static int proc_root_link(struct dentry *dentry, struct path *path)
201 {
202         struct task_struct *task = get_proc_task(d_inode(dentry));
203         int result = -ENOENT;
204
205         if (task) {
206                 result = get_task_root(task, path);
207                 put_task_struct(task);
208         }
209         return result;
210 }
211
212 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
213                               size_t count, loff_t *ppos)
214 {
215         unsigned long arg_start, arg_end, env_start, env_end;
216         unsigned long pos, len;
217         char *page;
218
219         /* Check if process spawned far enough to have cmdline. */
220         if (!mm->env_end)
221                 return 0;
222
223         spin_lock(&mm->arg_lock);
224         arg_start = mm->arg_start;
225         arg_end = mm->arg_end;
226         env_start = mm->env_start;
227         env_end = mm->env_end;
228         spin_unlock(&mm->arg_lock);
229
230         if (arg_start >= arg_end)
231                 return 0;
232
233         /*
234          * We have traditionally allowed the user to re-write
235          * the argument strings and overflow the end result
236          * into the environment section. But only do that if
237          * the environment area is contiguous to the arguments.
238          */
239         if (env_start != arg_end || env_start >= env_end)
240                 env_start = env_end = arg_end;
241
242         /* .. and limit it to a maximum of one page of slop */
243         if (env_end >= arg_end + PAGE_SIZE)
244                 env_end = arg_end + PAGE_SIZE - 1;
245
246         /* We're not going to care if "*ppos" has high bits set */
247         pos = arg_start + *ppos;
248
249         /* .. but we do check the result is in the proper range */
250         if (pos < arg_start || pos >= env_end)
251                 return 0;
252
253         /* .. and we never go past env_end */
254         if (env_end - pos < count)
255                 count = env_end - pos;
256
257         page = (char *)__get_free_page(GFP_KERNEL);
258         if (!page)
259                 return -ENOMEM;
260
261         len = 0;
262         while (count) {
263                 int got;
264                 size_t size = min_t(size_t, PAGE_SIZE, count);
265                 long offset;
266
267                 /*
268                  * Are we already starting past the official end?
269                  * We always include the last byte that is *supposed*
270                  * to be NUL
271                  */
272                 offset = (pos >= arg_end) ? pos - arg_end + 1 : 0;
273
274                 got = access_remote_vm(mm, pos - offset, page, size + offset, FOLL_ANON);
275                 if (got <= offset)
276                         break;
277                 got -= offset;
278
279                 /* Don't walk past a NUL character once you hit arg_end */
280                 if (pos + got >= arg_end) {
281                         int n = 0;
282
283                         /*
284                          * If we started before 'arg_end' but ended up
285                          * at or after it, we start the NUL character
286                          * check at arg_end-1 (where we expect the normal
287                          * EOF to be).
288                          *
289                          * NOTE! This is smaller than 'got', because
290                          * pos + got >= arg_end
291                          */
292                         if (pos < arg_end)
293                                 n = arg_end - pos - 1;
294
295                         /* Cut off at first NUL after 'n' */
296                         got = n + strnlen(page+n, offset+got-n);
297                         if (got < offset)
298                                 break;
299                         got -= offset;
300
301                         /* Include the NUL if it existed */
302                         if (got < size)
303                                 got++;
304                 }
305
306                 got -= copy_to_user(buf, page+offset, got);
307                 if (unlikely(!got)) {
308                         if (!len)
309                                 len = -EFAULT;
310                         break;
311                 }
312                 pos += got;
313                 buf += got;
314                 len += got;
315                 count -= got;
316         }
317
318         free_page((unsigned long)page);
319         return len;
320 }
321
322 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
323                                 size_t count, loff_t *pos)
324 {
325         struct mm_struct *mm;
326         ssize_t ret;
327
328         mm = get_task_mm(tsk);
329         if (!mm)
330                 return 0;
331
332         ret = get_mm_cmdline(mm, buf, count, pos);
333         mmput(mm);
334         return ret;
335 }
336
337 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
338                                      size_t count, loff_t *pos)
339 {
340         struct task_struct *tsk;
341         ssize_t ret;
342
343         BUG_ON(*pos < 0);
344
345         tsk = get_proc_task(file_inode(file));
346         if (!tsk)
347                 return -ESRCH;
348         ret = get_task_cmdline(tsk, buf, count, pos);
349         put_task_struct(tsk);
350         if (ret > 0)
351                 *pos += ret;
352         return ret;
353 }
354
355 static const struct file_operations proc_pid_cmdline_ops = {
356         .read   = proc_pid_cmdline_read,
357         .llseek = generic_file_llseek,
358 };
359
360 #ifdef CONFIG_KALLSYMS
361 /*
362  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
363  * Returns the resolved symbol.  If that fails, simply return the address.
364  */
365 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
366                           struct pid *pid, struct task_struct *task)
367 {
368         unsigned long wchan;
369         char symname[KSYM_NAME_LEN];
370
371         if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
372                 goto print0;
373
374         wchan = get_wchan(task);
375         if (wchan && !lookup_symbol_name(wchan, symname)) {
376                 seq_puts(m, symname);
377                 return 0;
378         }
379
380 print0:
381         seq_putc(m, '0');
382         return 0;
383 }
384 #endif /* CONFIG_KALLSYMS */
385
386 static int lock_trace(struct task_struct *task)
387 {
388         int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
389         if (err)
390                 return err;
391         if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
392                 mutex_unlock(&task->signal->cred_guard_mutex);
393                 return -EPERM;
394         }
395         return 0;
396 }
397
398 static void unlock_trace(struct task_struct *task)
399 {
400         mutex_unlock(&task->signal->cred_guard_mutex);
401 }
402
403 #ifdef CONFIG_STACKTRACE
404
405 #define MAX_STACK_TRACE_DEPTH   64
406
407 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
408                           struct pid *pid, struct task_struct *task)
409 {
410         struct stack_trace trace;
411         unsigned long *entries;
412         int err;
413
414         /*
415          * The ability to racily run the kernel stack unwinder on a running task
416          * and then observe the unwinder output is scary; while it is useful for
417          * debugging kernel issues, it can also allow an attacker to leak kernel
418          * stack contents.
419          * Doing this in a manner that is at least safe from races would require
420          * some work to ensure that the remote task can not be scheduled; and
421          * even then, this would still expose the unwinder as local attack
422          * surface.
423          * Therefore, this interface is restricted to root.
424          */
425         if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
426                 return -EACCES;
427
428         entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
429                                 GFP_KERNEL);
430         if (!entries)
431                 return -ENOMEM;
432
433         trace.nr_entries        = 0;
434         trace.max_entries       = MAX_STACK_TRACE_DEPTH;
435         trace.entries           = entries;
436         trace.skip              = 0;
437
438         err = lock_trace(task);
439         if (!err) {
440                 unsigned int i;
441
442                 save_stack_trace_tsk(task, &trace);
443
444                 for (i = 0; i < trace.nr_entries; i++) {
445                         seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
446                 }
447                 unlock_trace(task);
448         }
449         kfree(entries);
450
451         return err;
452 }
453 #endif
454
455 #ifdef CONFIG_SCHED_INFO
456 /*
457  * Provides /proc/PID/schedstat
458  */
459 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
460                               struct pid *pid, struct task_struct *task)
461 {
462         if (unlikely(!sched_info_on()))
463                 seq_puts(m, "0 0 0\n");
464         else
465                 seq_printf(m, "%llu %llu %lu\n",
466                    (unsigned long long)task->se.sum_exec_runtime,
467                    (unsigned long long)task->sched_info.run_delay,
468                    task->sched_info.pcount);
469
470         return 0;
471 }
472 #endif
473
474 #ifdef CONFIG_LATENCYTOP
475 static int lstats_show_proc(struct seq_file *m, void *v)
476 {
477         int i;
478         struct inode *inode = m->private;
479         struct task_struct *task = get_proc_task(inode);
480
481         if (!task)
482                 return -ESRCH;
483         seq_puts(m, "Latency Top version : v0.1\n");
484         for (i = 0; i < LT_SAVECOUNT; i++) {
485                 struct latency_record *lr = &task->latency_record[i];
486                 if (lr->backtrace[0]) {
487                         int q;
488                         seq_printf(m, "%i %li %li",
489                                    lr->count, lr->time, lr->max);
490                         for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
491                                 unsigned long bt = lr->backtrace[q];
492                                 if (!bt)
493                                         break;
494                                 if (bt == ULONG_MAX)
495                                         break;
496                                 seq_printf(m, " %ps", (void *)bt);
497                         }
498                         seq_putc(m, '\n');
499                 }
500
501         }
502         put_task_struct(task);
503         return 0;
504 }
505
506 static int lstats_open(struct inode *inode, struct file *file)
507 {
508         return single_open(file, lstats_show_proc, inode);
509 }
510
511 static ssize_t lstats_write(struct file *file, const char __user *buf,
512                             size_t count, loff_t *offs)
513 {
514         struct task_struct *task = get_proc_task(file_inode(file));
515
516         if (!task)
517                 return -ESRCH;
518         clear_all_latency_tracing(task);
519         put_task_struct(task);
520
521         return count;
522 }
523
524 static const struct file_operations proc_lstats_operations = {
525         .open           = lstats_open,
526         .read           = seq_read,
527         .write          = lstats_write,
528         .llseek         = seq_lseek,
529         .release        = single_release,
530 };
531
532 #endif
533
534 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
535                           struct pid *pid, struct task_struct *task)
536 {
537         unsigned long totalpages = totalram_pages() + total_swap_pages;
538         unsigned long points = 0;
539
540         points = oom_badness(task, NULL, NULL, totalpages) *
541                                         1000 / totalpages;
542         seq_printf(m, "%lu\n", points);
543
544         return 0;
545 }
546
547 struct limit_names {
548         const char *name;
549         const char *unit;
550 };
551
552 static const struct limit_names lnames[RLIM_NLIMITS] = {
553         [RLIMIT_CPU] = {"Max cpu time", "seconds"},
554         [RLIMIT_FSIZE] = {"Max file size", "bytes"},
555         [RLIMIT_DATA] = {"Max data size", "bytes"},
556         [RLIMIT_STACK] = {"Max stack size", "bytes"},
557         [RLIMIT_CORE] = {"Max core file size", "bytes"},
558         [RLIMIT_RSS] = {"Max resident set", "bytes"},
559         [RLIMIT_NPROC] = {"Max processes", "processes"},
560         [RLIMIT_NOFILE] = {"Max open files", "files"},
561         [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
562         [RLIMIT_AS] = {"Max address space", "bytes"},
563         [RLIMIT_LOCKS] = {"Max file locks", "locks"},
564         [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
565         [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
566         [RLIMIT_NICE] = {"Max nice priority", NULL},
567         [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
568         [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
569 };
570
571 /* Display limits for a process */
572 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
573                            struct pid *pid, struct task_struct *task)
574 {
575         unsigned int i;
576         unsigned long flags;
577
578         struct rlimit rlim[RLIM_NLIMITS];
579
580         if (!lock_task_sighand(task, &flags))
581                 return 0;
582         memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
583         unlock_task_sighand(task, &flags);
584
585         /*
586          * print the file header
587          */
588         seq_puts(m, "Limit                     "
589                 "Soft Limit           "
590                 "Hard Limit           "
591                 "Units     \n");
592
593         for (i = 0; i < RLIM_NLIMITS; i++) {
594                 if (rlim[i].rlim_cur == RLIM_INFINITY)
595                         seq_printf(m, "%-25s %-20s ",
596                                    lnames[i].name, "unlimited");
597                 else
598                         seq_printf(m, "%-25s %-20lu ",
599                                    lnames[i].name, rlim[i].rlim_cur);
600
601                 if (rlim[i].rlim_max == RLIM_INFINITY)
602                         seq_printf(m, "%-20s ", "unlimited");
603                 else
604                         seq_printf(m, "%-20lu ", rlim[i].rlim_max);
605
606                 if (lnames[i].unit)
607                         seq_printf(m, "%-10s\n", lnames[i].unit);
608                 else
609                         seq_putc(m, '\n');
610         }
611
612         return 0;
613 }
614
615 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
616 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
617                             struct pid *pid, struct task_struct *task)
618 {
619         long nr;
620         unsigned long args[6], sp, pc;
621         int res;
622
623         res = lock_trace(task);
624         if (res)
625                 return res;
626
627         if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
628                 seq_puts(m, "running\n");
629         else if (nr < 0)
630                 seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
631         else
632                 seq_printf(m,
633                        "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
634                        nr,
635                        args[0], args[1], args[2], args[3], args[4], args[5],
636                        sp, pc);
637         unlock_trace(task);
638
639         return 0;
640 }
641 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
642
643 /************************************************************************/
644 /*                       Here the fs part begins                        */
645 /************************************************************************/
646
647 /* permission checks */
648 static int proc_fd_access_allowed(struct inode *inode)
649 {
650         struct task_struct *task;
651         int allowed = 0;
652         /* Allow access to a task's file descriptors if it is us or we
653          * may use ptrace attach to the process and find out that
654          * information.
655          */
656         task = get_proc_task(inode);
657         if (task) {
658                 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
659                 put_task_struct(task);
660         }
661         return allowed;
662 }
663
664 int proc_setattr(struct dentry *dentry, struct iattr *attr)
665 {
666         int error;
667         struct inode *inode = d_inode(dentry);
668
669         if (attr->ia_valid & ATTR_MODE)
670                 return -EPERM;
671
672         error = setattr_prepare(dentry, attr);
673         if (error)
674                 return error;
675
676         setattr_copy(inode, attr);
677         mark_inode_dirty(inode);
678         return 0;
679 }
680
681 /*
682  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
683  * or euid/egid (for hide_pid_min=2)?
684  */
685 static bool has_pid_permissions(struct pid_namespace *pid,
686                                  struct task_struct *task,
687                                  int hide_pid_min)
688 {
689         if (pid->hide_pid < hide_pid_min)
690                 return true;
691         if (in_group_p(pid->pid_gid))
692                 return true;
693         return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
694 }
695
696
697 static int proc_pid_permission(struct inode *inode, int mask)
698 {
699         struct pid_namespace *pid = proc_pid_ns(inode);
700         struct task_struct *task;
701         bool has_perms;
702
703         task = get_proc_task(inode);
704         if (!task)
705                 return -ESRCH;
706         has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
707         put_task_struct(task);
708
709         if (!has_perms) {
710                 if (pid->hide_pid == HIDEPID_INVISIBLE) {
711                         /*
712                          * Let's make getdents(), stat(), and open()
713                          * consistent with each other.  If a process
714                          * may not stat() a file, it shouldn't be seen
715                          * in procfs at all.
716                          */
717                         return -ENOENT;
718                 }
719
720                 return -EPERM;
721         }
722         return generic_permission(inode, mask);
723 }
724
725
726
727 static const struct inode_operations proc_def_inode_operations = {
728         .setattr        = proc_setattr,
729 };
730
731 static int proc_single_show(struct seq_file *m, void *v)
732 {
733         struct inode *inode = m->private;
734         struct pid_namespace *ns = proc_pid_ns(inode);
735         struct pid *pid = proc_pid(inode);
736         struct task_struct *task;
737         int ret;
738
739         task = get_pid_task(pid, PIDTYPE_PID);
740         if (!task)
741                 return -ESRCH;
742
743         ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
744
745         put_task_struct(task);
746         return ret;
747 }
748
749 static int proc_single_open(struct inode *inode, struct file *filp)
750 {
751         return single_open(filp, proc_single_show, inode);
752 }
753
754 static const struct file_operations proc_single_file_operations = {
755         .open           = proc_single_open,
756         .read           = seq_read,
757         .llseek         = seq_lseek,
758         .release        = single_release,
759 };
760
761
762 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
763 {
764         struct task_struct *task = get_proc_task(inode);
765         struct mm_struct *mm = ERR_PTR(-ESRCH);
766
767         if (task) {
768                 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
769                 put_task_struct(task);
770
771                 if (!IS_ERR_OR_NULL(mm)) {
772                         /* ensure this mm_struct can't be freed */
773                         mmgrab(mm);
774                         /* but do not pin its memory */
775                         mmput(mm);
776                 }
777         }
778
779         return mm;
780 }
781
782 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
783 {
784         struct mm_struct *mm = proc_mem_open(inode, mode);
785
786         if (IS_ERR(mm))
787                 return PTR_ERR(mm);
788
789         file->private_data = mm;
790         return 0;
791 }
792
793 static int mem_open(struct inode *inode, struct file *file)
794 {
795         int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
796
797         /* OK to pass negative loff_t, we can catch out-of-range */
798         file->f_mode |= FMODE_UNSIGNED_OFFSET;
799
800         return ret;
801 }
802
803 static ssize_t mem_rw(struct file *file, char __user *buf,
804                         size_t count, loff_t *ppos, int write)
805 {
806         struct mm_struct *mm = file->private_data;
807         unsigned long addr = *ppos;
808         ssize_t copied;
809         char *page;
810         unsigned int flags;
811
812         if (!mm)
813                 return 0;
814
815         page = (char *)__get_free_page(GFP_KERNEL);
816         if (!page)
817                 return -ENOMEM;
818
819         copied = 0;
820         if (!mmget_not_zero(mm))
821                 goto free;
822
823         flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
824
825         while (count > 0) {
826                 int this_len = min_t(int, count, PAGE_SIZE);
827
828                 if (write && copy_from_user(page, buf, this_len)) {
829                         copied = -EFAULT;
830                         break;
831                 }
832
833                 this_len = access_remote_vm(mm, addr, page, this_len, flags);
834                 if (!this_len) {
835                         if (!copied)
836                                 copied = -EIO;
837                         break;
838                 }
839
840                 if (!write && copy_to_user(buf, page, this_len)) {
841                         copied = -EFAULT;
842                         break;
843                 }
844
845                 buf += this_len;
846                 addr += this_len;
847                 copied += this_len;
848                 count -= this_len;
849         }
850         *ppos = addr;
851
852         mmput(mm);
853 free:
854         free_page((unsigned long) page);
855         return copied;
856 }
857
858 static ssize_t mem_read(struct file *file, char __user *buf,
859                         size_t count, loff_t *ppos)
860 {
861         return mem_rw(file, buf, count, ppos, 0);
862 }
863
864 static ssize_t mem_write(struct file *file, const char __user *buf,
865                          size_t count, loff_t *ppos)
866 {
867         return mem_rw(file, (char __user*)buf, count, ppos, 1);
868 }
869
870 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
871 {
872         switch (orig) {
873         case 0:
874                 file->f_pos = offset;
875                 break;
876         case 1:
877                 file->f_pos += offset;
878                 break;
879         default:
880                 return -EINVAL;
881         }
882         force_successful_syscall_return();
883         return file->f_pos;
884 }
885
886 static int mem_release(struct inode *inode, struct file *file)
887 {
888         struct mm_struct *mm = file->private_data;
889         if (mm)
890                 mmdrop(mm);
891         return 0;
892 }
893
894 static const struct file_operations proc_mem_operations = {
895         .llseek         = mem_lseek,
896         .read           = mem_read,
897         .write          = mem_write,
898         .open           = mem_open,
899         .release        = mem_release,
900 };
901
902 static int environ_open(struct inode *inode, struct file *file)
903 {
904         return __mem_open(inode, file, PTRACE_MODE_READ);
905 }
906
907 static ssize_t environ_read(struct file *file, char __user *buf,
908                         size_t count, loff_t *ppos)
909 {
910         char *page;
911         unsigned long src = *ppos;
912         int ret = 0;
913         struct mm_struct *mm = file->private_data;
914         unsigned long env_start, env_end;
915
916         /* Ensure the process spawned far enough to have an environment. */
917         if (!mm || !mm->env_end)
918                 return 0;
919
920         page = (char *)__get_free_page(GFP_KERNEL);
921         if (!page)
922                 return -ENOMEM;
923
924         ret = 0;
925         if (!mmget_not_zero(mm))
926                 goto free;
927
928         spin_lock(&mm->arg_lock);
929         env_start = mm->env_start;
930         env_end = mm->env_end;
931         spin_unlock(&mm->arg_lock);
932
933         while (count > 0) {
934                 size_t this_len, max_len;
935                 int retval;
936
937                 if (src >= (env_end - env_start))
938                         break;
939
940                 this_len = env_end - (env_start + src);
941
942                 max_len = min_t(size_t, PAGE_SIZE, count);
943                 this_len = min(max_len, this_len);
944
945                 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
946
947                 if (retval <= 0) {
948                         ret = retval;
949                         break;
950                 }
951
952                 if (copy_to_user(buf, page, retval)) {
953                         ret = -EFAULT;
954                         break;
955                 }
956
957                 ret += retval;
958                 src += retval;
959                 buf += retval;
960                 count -= retval;
961         }
962         *ppos = src;
963         mmput(mm);
964
965 free:
966         free_page((unsigned long) page);
967         return ret;
968 }
969
970 static const struct file_operations proc_environ_operations = {
971         .open           = environ_open,
972         .read           = environ_read,
973         .llseek         = generic_file_llseek,
974         .release        = mem_release,
975 };
976
977 static int auxv_open(struct inode *inode, struct file *file)
978 {
979         return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
980 }
981
982 static ssize_t auxv_read(struct file *file, char __user *buf,
983                         size_t count, loff_t *ppos)
984 {
985         struct mm_struct *mm = file->private_data;
986         unsigned int nwords = 0;
987
988         if (!mm)
989                 return 0;
990         do {
991                 nwords += 2;
992         } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
993         return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
994                                        nwords * sizeof(mm->saved_auxv[0]));
995 }
996
997 static const struct file_operations proc_auxv_operations = {
998         .open           = auxv_open,
999         .read           = auxv_read,
1000         .llseek         = generic_file_llseek,
1001         .release        = mem_release,
1002 };
1003
1004 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1005                             loff_t *ppos)
1006 {
1007         struct task_struct *task = get_proc_task(file_inode(file));
1008         char buffer[PROC_NUMBUF];
1009         int oom_adj = OOM_ADJUST_MIN;
1010         size_t len;
1011
1012         if (!task)
1013                 return -ESRCH;
1014         if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1015                 oom_adj = OOM_ADJUST_MAX;
1016         else
1017                 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1018                           OOM_SCORE_ADJ_MAX;
1019         put_task_struct(task);
1020         len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1021         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1022 }
1023
1024 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1025 {
1026         static DEFINE_MUTEX(oom_adj_mutex);
1027         struct mm_struct *mm = NULL;
1028         struct task_struct *task;
1029         int err = 0;
1030
1031         task = get_proc_task(file_inode(file));
1032         if (!task)
1033                 return -ESRCH;
1034
1035         mutex_lock(&oom_adj_mutex);
1036         if (legacy) {
1037                 if (oom_adj < task->signal->oom_score_adj &&
1038                                 !capable(CAP_SYS_RESOURCE)) {
1039                         err = -EACCES;
1040                         goto err_unlock;
1041                 }
1042                 /*
1043                  * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1044                  * /proc/pid/oom_score_adj instead.
1045                  */
1046                 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1047                           current->comm, task_pid_nr(current), task_pid_nr(task),
1048                           task_pid_nr(task));
1049         } else {
1050                 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1051                                 !capable(CAP_SYS_RESOURCE)) {
1052                         err = -EACCES;
1053                         goto err_unlock;
1054                 }
1055         }
1056
1057         /*
1058          * Make sure we will check other processes sharing the mm if this is
1059          * not vfrok which wants its own oom_score_adj.
1060          * pin the mm so it doesn't go away and get reused after task_unlock
1061          */
1062         if (!task->vfork_done) {
1063                 struct task_struct *p = find_lock_task_mm(task);
1064
1065                 if (p) {
1066                         if (atomic_read(&p->mm->mm_users) > 1) {
1067                                 mm = p->mm;
1068                                 mmgrab(mm);
1069                         }
1070                         task_unlock(p);
1071                 }
1072         }
1073
1074         task->signal->oom_score_adj = oom_adj;
1075         if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1076                 task->signal->oom_score_adj_min = (short)oom_adj;
1077         trace_oom_score_adj_update(task);
1078
1079         if (mm) {
1080                 struct task_struct *p;
1081
1082                 rcu_read_lock();
1083                 for_each_process(p) {
1084                         if (same_thread_group(task, p))
1085                                 continue;
1086
1087                         /* do not touch kernel threads or the global init */
1088                         if (p->flags & PF_KTHREAD || is_global_init(p))
1089                                 continue;
1090
1091                         task_lock(p);
1092                         if (!p->vfork_done && process_shares_mm(p, mm)) {
1093                                 pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1094                                                 task_pid_nr(p), p->comm,
1095                                                 p->signal->oom_score_adj, oom_adj,
1096                                                 task_pid_nr(task), task->comm);
1097                                 p->signal->oom_score_adj = oom_adj;
1098                                 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1099                                         p->signal->oom_score_adj_min = (short)oom_adj;
1100                         }
1101                         task_unlock(p);
1102                 }
1103                 rcu_read_unlock();
1104                 mmdrop(mm);
1105         }
1106 err_unlock:
1107         mutex_unlock(&oom_adj_mutex);
1108         put_task_struct(task);
1109         return err;
1110 }
1111
1112 /*
1113  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1114  * kernels.  The effective policy is defined by oom_score_adj, which has a
1115  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1116  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1117  * Processes that become oom disabled via oom_adj will still be oom disabled
1118  * with this implementation.
1119  *
1120  * oom_adj cannot be removed since existing userspace binaries use it.
1121  */
1122 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1123                              size_t count, loff_t *ppos)
1124 {
1125         char buffer[PROC_NUMBUF];
1126         int oom_adj;
1127         int err;
1128
1129         memset(buffer, 0, sizeof(buffer));
1130         if (count > sizeof(buffer) - 1)
1131                 count = sizeof(buffer) - 1;
1132         if (copy_from_user(buffer, buf, count)) {
1133                 err = -EFAULT;
1134                 goto out;
1135         }
1136
1137         err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1138         if (err)
1139                 goto out;
1140         if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1141              oom_adj != OOM_DISABLE) {
1142                 err = -EINVAL;
1143                 goto out;
1144         }
1145
1146         /*
1147          * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1148          * value is always attainable.
1149          */
1150         if (oom_adj == OOM_ADJUST_MAX)
1151                 oom_adj = OOM_SCORE_ADJ_MAX;
1152         else
1153                 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1154
1155         err = __set_oom_adj(file, oom_adj, true);
1156 out:
1157         return err < 0 ? err : count;
1158 }
1159
1160 static const struct file_operations proc_oom_adj_operations = {
1161         .read           = oom_adj_read,
1162         .write          = oom_adj_write,
1163         .llseek         = generic_file_llseek,
1164 };
1165
1166 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1167                                         size_t count, loff_t *ppos)
1168 {
1169         struct task_struct *task = get_proc_task(file_inode(file));
1170         char buffer[PROC_NUMBUF];
1171         short oom_score_adj = OOM_SCORE_ADJ_MIN;
1172         size_t len;
1173
1174         if (!task)
1175                 return -ESRCH;
1176         oom_score_adj = task->signal->oom_score_adj;
1177         put_task_struct(task);
1178         len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1179         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1180 }
1181
1182 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1183                                         size_t count, loff_t *ppos)
1184 {
1185         char buffer[PROC_NUMBUF];
1186         int oom_score_adj;
1187         int err;
1188
1189         memset(buffer, 0, sizeof(buffer));
1190         if (count > sizeof(buffer) - 1)
1191                 count = sizeof(buffer) - 1;
1192         if (copy_from_user(buffer, buf, count)) {
1193                 err = -EFAULT;
1194                 goto out;
1195         }
1196
1197         err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1198         if (err)
1199                 goto out;
1200         if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1201                         oom_score_adj > OOM_SCORE_ADJ_MAX) {
1202                 err = -EINVAL;
1203                 goto out;
1204         }
1205
1206         err = __set_oom_adj(file, oom_score_adj, false);
1207 out:
1208         return err < 0 ? err : count;
1209 }
1210
1211 static const struct file_operations proc_oom_score_adj_operations = {
1212         .read           = oom_score_adj_read,
1213         .write          = oom_score_adj_write,
1214         .llseek         = default_llseek,
1215 };
1216
1217 #ifdef CONFIG_AUDIT
1218 #define TMPBUFLEN 11
1219 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1220                                   size_t count, loff_t *ppos)
1221 {
1222         struct inode * inode = file_inode(file);
1223         struct task_struct *task = get_proc_task(inode);
1224         ssize_t length;
1225         char tmpbuf[TMPBUFLEN];
1226
1227         if (!task)
1228                 return -ESRCH;
1229         length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1230                            from_kuid(file->f_cred->user_ns,
1231                                      audit_get_loginuid(task)));
1232         put_task_struct(task);
1233         return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1234 }
1235
1236 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1237                                    size_t count, loff_t *ppos)
1238 {
1239         struct inode * inode = file_inode(file);
1240         uid_t loginuid;
1241         kuid_t kloginuid;
1242         int rv;
1243
1244         rcu_read_lock();
1245         if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1246                 rcu_read_unlock();
1247                 return -EPERM;
1248         }
1249         rcu_read_unlock();
1250
1251         if (*ppos != 0) {
1252                 /* No partial writes. */
1253                 return -EINVAL;
1254         }
1255
1256         rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1257         if (rv < 0)
1258                 return rv;
1259
1260         /* is userspace tring to explicitly UNSET the loginuid? */
1261         if (loginuid == AUDIT_UID_UNSET) {
1262                 kloginuid = INVALID_UID;
1263         } else {
1264                 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1265                 if (!uid_valid(kloginuid))
1266                         return -EINVAL;
1267         }
1268
1269         rv = audit_set_loginuid(kloginuid);
1270         if (rv < 0)
1271                 return rv;
1272         return count;
1273 }
1274
1275 static const struct file_operations proc_loginuid_operations = {
1276         .read           = proc_loginuid_read,
1277         .write          = proc_loginuid_write,
1278         .llseek         = generic_file_llseek,
1279 };
1280
1281 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1282                                   size_t count, loff_t *ppos)
1283 {
1284         struct inode * inode = file_inode(file);
1285         struct task_struct *task = get_proc_task(inode);
1286         ssize_t length;
1287         char tmpbuf[TMPBUFLEN];
1288
1289         if (!task)
1290                 return -ESRCH;
1291         length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1292                                 audit_get_sessionid(task));
1293         put_task_struct(task);
1294         return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1295 }
1296
1297 static const struct file_operations proc_sessionid_operations = {
1298         .read           = proc_sessionid_read,
1299         .llseek         = generic_file_llseek,
1300 };
1301 #endif
1302
1303 #ifdef CONFIG_FAULT_INJECTION
1304 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1305                                       size_t count, loff_t *ppos)
1306 {
1307         struct task_struct *task = get_proc_task(file_inode(file));
1308         char buffer[PROC_NUMBUF];
1309         size_t len;
1310         int make_it_fail;
1311
1312         if (!task)
1313                 return -ESRCH;
1314         make_it_fail = task->make_it_fail;
1315         put_task_struct(task);
1316
1317         len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1318
1319         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1320 }
1321
1322 static ssize_t proc_fault_inject_write(struct file * file,
1323                         const char __user * buf, size_t count, loff_t *ppos)
1324 {
1325         struct task_struct *task;
1326         char buffer[PROC_NUMBUF];
1327         int make_it_fail;
1328         int rv;
1329
1330         if (!capable(CAP_SYS_RESOURCE))
1331                 return -EPERM;
1332         memset(buffer, 0, sizeof(buffer));
1333         if (count > sizeof(buffer) - 1)
1334                 count = sizeof(buffer) - 1;
1335         if (copy_from_user(buffer, buf, count))
1336                 return -EFAULT;
1337         rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1338         if (rv < 0)
1339                 return rv;
1340         if (make_it_fail < 0 || make_it_fail > 1)
1341                 return -EINVAL;
1342
1343         task = get_proc_task(file_inode(file));
1344         if (!task)
1345                 return -ESRCH;
1346         task->make_it_fail = make_it_fail;
1347         put_task_struct(task);
1348
1349         return count;
1350 }
1351
1352 static const struct file_operations proc_fault_inject_operations = {
1353         .read           = proc_fault_inject_read,
1354         .write          = proc_fault_inject_write,
1355         .llseek         = generic_file_llseek,
1356 };
1357
1358 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1359                                    size_t count, loff_t *ppos)
1360 {
1361         struct task_struct *task;
1362         int err;
1363         unsigned int n;
1364
1365         err = kstrtouint_from_user(buf, count, 0, &n);
1366         if (err)
1367                 return err;
1368
1369         task = get_proc_task(file_inode(file));
1370         if (!task)
1371                 return -ESRCH;
1372         task->fail_nth = n;
1373         put_task_struct(task);
1374
1375         return count;
1376 }
1377
1378 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1379                                   size_t count, loff_t *ppos)
1380 {
1381         struct task_struct *task;
1382         char numbuf[PROC_NUMBUF];
1383         ssize_t len;
1384
1385         task = get_proc_task(file_inode(file));
1386         if (!task)
1387                 return -ESRCH;
1388         len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1389         put_task_struct(task);
1390         return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1391 }
1392
1393 static const struct file_operations proc_fail_nth_operations = {
1394         .read           = proc_fail_nth_read,
1395         .write          = proc_fail_nth_write,
1396 };
1397 #endif
1398
1399
1400 #ifdef CONFIG_SCHED_DEBUG
1401 /*
1402  * Print out various scheduling related per-task fields:
1403  */
1404 static int sched_show(struct seq_file *m, void *v)
1405 {
1406         struct inode *inode = m->private;
1407         struct pid_namespace *ns = proc_pid_ns(inode);
1408         struct task_struct *p;
1409
1410         p = get_proc_task(inode);
1411         if (!p)
1412                 return -ESRCH;
1413         proc_sched_show_task(p, ns, m);
1414
1415         put_task_struct(p);
1416
1417         return 0;
1418 }
1419
1420 static ssize_t
1421 sched_write(struct file *file, const char __user *buf,
1422             size_t count, loff_t *offset)
1423 {
1424         struct inode *inode = file_inode(file);
1425         struct task_struct *p;
1426
1427         p = get_proc_task(inode);
1428         if (!p)
1429                 return -ESRCH;
1430         proc_sched_set_task(p);
1431
1432         put_task_struct(p);
1433
1434         return count;
1435 }
1436
1437 static int sched_open(struct inode *inode, struct file *filp)
1438 {
1439         return single_open(filp, sched_show, inode);
1440 }
1441
1442 static const struct file_operations proc_pid_sched_operations = {
1443         .open           = sched_open,
1444         .read           = seq_read,
1445         .write          = sched_write,
1446         .llseek         = seq_lseek,
1447         .release        = single_release,
1448 };
1449
1450 #endif
1451
1452 #ifdef CONFIG_SCHED_AUTOGROUP
1453 /*
1454  * Print out autogroup related information:
1455  */
1456 static int sched_autogroup_show(struct seq_file *m, void *v)
1457 {
1458         struct inode *inode = m->private;
1459         struct task_struct *p;
1460
1461         p = get_proc_task(inode);
1462         if (!p)
1463                 return -ESRCH;
1464         proc_sched_autogroup_show_task(p, m);
1465
1466         put_task_struct(p);
1467
1468         return 0;
1469 }
1470
1471 static ssize_t
1472 sched_autogroup_write(struct file *file, const char __user *buf,
1473             size_t count, loff_t *offset)
1474 {
1475         struct inode *inode = file_inode(file);
1476         struct task_struct *p;
1477         char buffer[PROC_NUMBUF];
1478         int nice;
1479         int err;
1480
1481         memset(buffer, 0, sizeof(buffer));
1482         if (count > sizeof(buffer) - 1)
1483                 count = sizeof(buffer) - 1;
1484         if (copy_from_user(buffer, buf, count))
1485                 return -EFAULT;
1486
1487         err = kstrtoint(strstrip(buffer), 0, &nice);
1488         if (err < 0)
1489                 return err;
1490
1491         p = get_proc_task(inode);
1492         if (!p)
1493                 return -ESRCH;
1494
1495         err = proc_sched_autogroup_set_nice(p, nice);
1496         if (err)
1497                 count = err;
1498
1499         put_task_struct(p);
1500
1501         return count;
1502 }
1503
1504 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1505 {
1506         int ret;
1507
1508         ret = single_open(filp, sched_autogroup_show, NULL);
1509         if (!ret) {
1510                 struct seq_file *m = filp->private_data;
1511
1512                 m->private = inode;
1513         }
1514         return ret;
1515 }
1516
1517 static const struct file_operations proc_pid_sched_autogroup_operations = {
1518         .open           = sched_autogroup_open,
1519         .read           = seq_read,
1520         .write          = sched_autogroup_write,
1521         .llseek         = seq_lseek,
1522         .release        = single_release,
1523 };
1524
1525 #endif /* CONFIG_SCHED_AUTOGROUP */
1526
1527 static ssize_t comm_write(struct file *file, const char __user *buf,
1528                                 size_t count, loff_t *offset)
1529 {
1530         struct inode *inode = file_inode(file);
1531         struct task_struct *p;
1532         char buffer[TASK_COMM_LEN];
1533         const size_t maxlen = sizeof(buffer) - 1;
1534
1535         memset(buffer, 0, sizeof(buffer));
1536         if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1537                 return -EFAULT;
1538
1539         p = get_proc_task(inode);
1540         if (!p)
1541                 return -ESRCH;
1542
1543         if (same_thread_group(current, p))
1544                 set_task_comm(p, buffer);
1545         else
1546                 count = -EINVAL;
1547
1548         put_task_struct(p);
1549
1550         return count;
1551 }
1552
1553 static int comm_show(struct seq_file *m, void *v)
1554 {
1555         struct inode *inode = m->private;
1556         struct task_struct *p;
1557
1558         p = get_proc_task(inode);
1559         if (!p)
1560                 return -ESRCH;
1561
1562         proc_task_name(m, p, false);
1563         seq_putc(m, '\n');
1564
1565         put_task_struct(p);
1566
1567         return 0;
1568 }
1569
1570 static int comm_open(struct inode *inode, struct file *filp)
1571 {
1572         return single_open(filp, comm_show, inode);
1573 }
1574
1575 static const struct file_operations proc_pid_set_comm_operations = {
1576         .open           = comm_open,
1577         .read           = seq_read,
1578         .write          = comm_write,
1579         .llseek         = seq_lseek,
1580         .release        = single_release,
1581 };
1582
1583 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1584 {
1585         struct task_struct *task;
1586         struct file *exe_file;
1587
1588         task = get_proc_task(d_inode(dentry));
1589         if (!task)
1590                 return -ENOENT;
1591         exe_file = get_task_exe_file(task);
1592         put_task_struct(task);
1593         if (exe_file) {
1594                 *exe_path = exe_file->f_path;
1595                 path_get(&exe_file->f_path);
1596                 fput(exe_file);
1597                 return 0;
1598         } else
1599                 return -ENOENT;
1600 }
1601
1602 static const char *proc_pid_get_link(struct dentry *dentry,
1603                                      struct inode *inode,
1604                                      struct delayed_call *done)
1605 {
1606         struct path path;
1607         int error = -EACCES;
1608
1609         if (!dentry)
1610                 return ERR_PTR(-ECHILD);
1611
1612         /* Are we allowed to snoop on the tasks file descriptors? */
1613         if (!proc_fd_access_allowed(inode))
1614                 goto out;
1615
1616         error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1617         if (error)
1618                 goto out;
1619
1620         nd_jump_link(&path);
1621         return NULL;
1622 out:
1623         return ERR_PTR(error);
1624 }
1625
1626 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1627 {
1628         char *tmp = (char *)__get_free_page(GFP_KERNEL);
1629         char *pathname;
1630         int len;
1631
1632         if (!tmp)
1633                 return -ENOMEM;
1634
1635         pathname = d_path(path, tmp, PAGE_SIZE);
1636         len = PTR_ERR(pathname);
1637         if (IS_ERR(pathname))
1638                 goto out;
1639         len = tmp + PAGE_SIZE - 1 - pathname;
1640
1641         if (len > buflen)
1642                 len = buflen;
1643         if (copy_to_user(buffer, pathname, len))
1644                 len = -EFAULT;
1645  out:
1646         free_page((unsigned long)tmp);
1647         return len;
1648 }
1649
1650 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1651 {
1652         int error = -EACCES;
1653         struct inode *inode = d_inode(dentry);
1654         struct path path;
1655
1656         /* Are we allowed to snoop on the tasks file descriptors? */
1657         if (!proc_fd_access_allowed(inode))
1658                 goto out;
1659
1660         error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1661         if (error)
1662                 goto out;
1663
1664         error = do_proc_readlink(&path, buffer, buflen);
1665         path_put(&path);
1666 out:
1667         return error;
1668 }
1669
1670 const struct inode_operations proc_pid_link_inode_operations = {
1671         .readlink       = proc_pid_readlink,
1672         .get_link       = proc_pid_get_link,
1673         .setattr        = proc_setattr,
1674 };
1675
1676
1677 /* building an inode */
1678
1679 void task_dump_owner(struct task_struct *task, umode_t mode,
1680                      kuid_t *ruid, kgid_t *rgid)
1681 {
1682         /* Depending on the state of dumpable compute who should own a
1683          * proc file for a task.
1684          */
1685         const struct cred *cred;
1686         kuid_t uid;
1687         kgid_t gid;
1688
1689         if (unlikely(task->flags & PF_KTHREAD)) {
1690                 *ruid = GLOBAL_ROOT_UID;
1691                 *rgid = GLOBAL_ROOT_GID;
1692                 return;
1693         }
1694
1695         /* Default to the tasks effective ownership */
1696         rcu_read_lock();
1697         cred = __task_cred(task);
1698         uid = cred->euid;
1699         gid = cred->egid;
1700         rcu_read_unlock();
1701
1702         /*
1703          * Before the /proc/pid/status file was created the only way to read
1704          * the effective uid of a /process was to stat /proc/pid.  Reading
1705          * /proc/pid/status is slow enough that procps and other packages
1706          * kept stating /proc/pid.  To keep the rules in /proc simple I have
1707          * made this apply to all per process world readable and executable
1708          * directories.
1709          */
1710         if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1711                 struct mm_struct *mm;
1712                 task_lock(task);
1713                 mm = task->mm;
1714                 /* Make non-dumpable tasks owned by some root */
1715                 if (mm) {
1716                         if (get_dumpable(mm) != SUID_DUMP_USER) {
1717                                 struct user_namespace *user_ns = mm->user_ns;
1718
1719                                 uid = make_kuid(user_ns, 0);
1720                                 if (!uid_valid(uid))
1721                                         uid = GLOBAL_ROOT_UID;
1722
1723                                 gid = make_kgid(user_ns, 0);
1724                                 if (!gid_valid(gid))
1725                                         gid = GLOBAL_ROOT_GID;
1726                         }
1727                 } else {
1728                         uid = GLOBAL_ROOT_UID;
1729                         gid = GLOBAL_ROOT_GID;
1730                 }
1731                 task_unlock(task);
1732         }
1733         *ruid = uid;
1734         *rgid = gid;
1735 }
1736
1737 struct inode *proc_pid_make_inode(struct super_block * sb,
1738                                   struct task_struct *task, umode_t mode)
1739 {
1740         struct inode * inode;
1741         struct proc_inode *ei;
1742
1743         /* We need a new inode */
1744
1745         inode = new_inode(sb);
1746         if (!inode)
1747                 goto out;
1748
1749         /* Common stuff */
1750         ei = PROC_I(inode);
1751         inode->i_mode = mode;
1752         inode->i_ino = get_next_ino();
1753         inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1754         inode->i_op = &proc_def_inode_operations;
1755
1756         /*
1757          * grab the reference to task.
1758          */
1759         ei->pid = get_task_pid(task, PIDTYPE_PID);
1760         if (!ei->pid)
1761                 goto out_unlock;
1762
1763         task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1764         security_task_to_inode(task, inode);
1765
1766 out:
1767         return inode;
1768
1769 out_unlock:
1770         iput(inode);
1771         return NULL;
1772 }
1773
1774 int pid_getattr(const struct path *path, struct kstat *stat,
1775                 u32 request_mask, unsigned int query_flags)
1776 {
1777         struct inode *inode = d_inode(path->dentry);
1778         struct pid_namespace *pid = proc_pid_ns(inode);
1779         struct task_struct *task;
1780
1781         generic_fillattr(inode, stat);
1782
1783         stat->uid = GLOBAL_ROOT_UID;
1784         stat->gid = GLOBAL_ROOT_GID;
1785         rcu_read_lock();
1786         task = pid_task(proc_pid(inode), PIDTYPE_PID);
1787         if (task) {
1788                 if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1789                         rcu_read_unlock();
1790                         /*
1791                          * This doesn't prevent learning whether PID exists,
1792                          * it only makes getattr() consistent with readdir().
1793                          */
1794                         return -ENOENT;
1795                 }
1796                 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1797         }
1798         rcu_read_unlock();
1799         return 0;
1800 }
1801
1802 /* dentry stuff */
1803
1804 /*
1805  * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1806  */
1807 void pid_update_inode(struct task_struct *task, struct inode *inode)
1808 {
1809         task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1810
1811         inode->i_mode &= ~(S_ISUID | S_ISGID);
1812         security_task_to_inode(task, inode);
1813 }
1814
1815 /*
1816  * Rewrite the inode's ownerships here because the owning task may have
1817  * performed a setuid(), etc.
1818  *
1819  */
1820 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1821 {
1822         struct inode *inode;
1823         struct task_struct *task;
1824
1825         if (flags & LOOKUP_RCU)
1826                 return -ECHILD;
1827
1828         inode = d_inode(dentry);
1829         task = get_proc_task(inode);
1830
1831         if (task) {
1832                 pid_update_inode(task, inode);
1833                 put_task_struct(task);
1834                 return 1;
1835         }
1836         return 0;
1837 }
1838
1839 static inline bool proc_inode_is_dead(struct inode *inode)
1840 {
1841         return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1842 }
1843
1844 int pid_delete_dentry(const struct dentry *dentry)
1845 {
1846         /* Is the task we represent dead?
1847          * If so, then don't put the dentry on the lru list,
1848          * kill it immediately.
1849          */
1850         return proc_inode_is_dead(d_inode(dentry));
1851 }
1852
1853 const struct dentry_operations pid_dentry_operations =
1854 {
1855         .d_revalidate   = pid_revalidate,
1856         .d_delete       = pid_delete_dentry,
1857 };
1858
1859 /* Lookups */
1860
1861 /*
1862  * Fill a directory entry.
1863  *
1864  * If possible create the dcache entry and derive our inode number and
1865  * file type from dcache entry.
1866  *
1867  * Since all of the proc inode numbers are dynamically generated, the inode
1868  * numbers do not exist until the inode is cache.  This means creating the
1869  * the dcache entry in readdir is necessary to keep the inode numbers
1870  * reported by readdir in sync with the inode numbers reported
1871  * by stat.
1872  */
1873 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1874         const char *name, unsigned int len,
1875         instantiate_t instantiate, struct task_struct *task, const void *ptr)
1876 {
1877         struct dentry *child, *dir = file->f_path.dentry;
1878         struct qstr qname = QSTR_INIT(name, len);
1879         struct inode *inode;
1880         unsigned type = DT_UNKNOWN;
1881         ino_t ino = 1;
1882
1883         child = d_hash_and_lookup(dir, &qname);
1884         if (!child) {
1885                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1886                 child = d_alloc_parallel(dir, &qname, &wq);
1887                 if (IS_ERR(child))
1888                         goto end_instantiate;
1889                 if (d_in_lookup(child)) {
1890                         struct dentry *res;
1891                         res = instantiate(child, task, ptr);
1892                         d_lookup_done(child);
1893                         if (unlikely(res)) {
1894                                 dput(child);
1895                                 child = res;
1896                                 if (IS_ERR(child))
1897                                         goto end_instantiate;
1898                         }
1899                 }
1900         }
1901         inode = d_inode(child);
1902         ino = inode->i_ino;
1903         type = inode->i_mode >> 12;
1904         dput(child);
1905 end_instantiate:
1906         return dir_emit(ctx, name, len, ino, type);
1907 }
1908
1909 /*
1910  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1911  * which represent vma start and end addresses.
1912  */
1913 static int dname_to_vma_addr(struct dentry *dentry,
1914                              unsigned long *start, unsigned long *end)
1915 {
1916         const char *str = dentry->d_name.name;
1917         unsigned long long sval, eval;
1918         unsigned int len;
1919
1920         if (str[0] == '0' && str[1] != '-')
1921                 return -EINVAL;
1922         len = _parse_integer(str, 16, &sval);
1923         if (len & KSTRTOX_OVERFLOW)
1924                 return -EINVAL;
1925         if (sval != (unsigned long)sval)
1926                 return -EINVAL;
1927         str += len;
1928
1929         if (*str != '-')
1930                 return -EINVAL;
1931         str++;
1932
1933         if (str[0] == '0' && str[1])
1934                 return -EINVAL;
1935         len = _parse_integer(str, 16, &eval);
1936         if (len & KSTRTOX_OVERFLOW)
1937                 return -EINVAL;
1938         if (eval != (unsigned long)eval)
1939                 return -EINVAL;
1940         str += len;
1941
1942         if (*str != '\0')
1943                 return -EINVAL;
1944
1945         *start = sval;
1946         *end = eval;
1947
1948         return 0;
1949 }
1950
1951 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1952 {
1953         unsigned long vm_start, vm_end;
1954         bool exact_vma_exists = false;
1955         struct mm_struct *mm = NULL;
1956         struct task_struct *task;
1957         struct inode *inode;
1958         int status = 0;
1959
1960         if (flags & LOOKUP_RCU)
1961                 return -ECHILD;
1962
1963         inode = d_inode(dentry);
1964         task = get_proc_task(inode);
1965         if (!task)
1966                 goto out_notask;
1967
1968         mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1969         if (IS_ERR_OR_NULL(mm))
1970                 goto out;
1971
1972         if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1973                 down_read(&mm->mmap_sem);
1974                 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1975                 up_read(&mm->mmap_sem);
1976         }
1977
1978         mmput(mm);
1979
1980         if (exact_vma_exists) {
1981                 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1982
1983                 security_task_to_inode(task, inode);
1984                 status = 1;
1985         }
1986
1987 out:
1988         put_task_struct(task);
1989
1990 out_notask:
1991         return status;
1992 }
1993
1994 static const struct dentry_operations tid_map_files_dentry_operations = {
1995         .d_revalidate   = map_files_d_revalidate,
1996         .d_delete       = pid_delete_dentry,
1997 };
1998
1999 static int map_files_get_link(struct dentry *dentry, struct path *path)
2000 {
2001         unsigned long vm_start, vm_end;
2002         struct vm_area_struct *vma;
2003         struct task_struct *task;
2004         struct mm_struct *mm;
2005         int rc;
2006
2007         rc = -ENOENT;
2008         task = get_proc_task(d_inode(dentry));
2009         if (!task)
2010                 goto out;
2011
2012         mm = get_task_mm(task);
2013         put_task_struct(task);
2014         if (!mm)
2015                 goto out;
2016
2017         rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2018         if (rc)
2019                 goto out_mmput;
2020
2021         rc = -ENOENT;
2022         down_read(&mm->mmap_sem);
2023         vma = find_exact_vma(mm, vm_start, vm_end);
2024         if (vma && vma->vm_file) {
2025                 *path = vma->vm_file->f_path;
2026                 path_get(path);
2027                 rc = 0;
2028         }
2029         up_read(&mm->mmap_sem);
2030
2031 out_mmput:
2032         mmput(mm);
2033 out:
2034         return rc;
2035 }
2036
2037 struct map_files_info {
2038         unsigned long   start;
2039         unsigned long   end;
2040         fmode_t         mode;
2041 };
2042
2043 /*
2044  * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2045  * symlinks may be used to bypass permissions on ancestor directories in the
2046  * path to the file in question.
2047  */
2048 static const char *
2049 proc_map_files_get_link(struct dentry *dentry,
2050                         struct inode *inode,
2051                         struct delayed_call *done)
2052 {
2053         if (!capable(CAP_SYS_ADMIN))
2054                 return ERR_PTR(-EPERM);
2055
2056         return proc_pid_get_link(dentry, inode, done);
2057 }
2058
2059 /*
2060  * Identical to proc_pid_link_inode_operations except for get_link()
2061  */
2062 static const struct inode_operations proc_map_files_link_inode_operations = {
2063         .readlink       = proc_pid_readlink,
2064         .get_link       = proc_map_files_get_link,
2065         .setattr        = proc_setattr,
2066 };
2067
2068 static struct dentry *
2069 proc_map_files_instantiate(struct dentry *dentry,
2070                            struct task_struct *task, const void *ptr)
2071 {
2072         fmode_t mode = (fmode_t)(unsigned long)ptr;
2073         struct proc_inode *ei;
2074         struct inode *inode;
2075
2076         inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2077                                     ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2078                                     ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2079         if (!inode)
2080                 return ERR_PTR(-ENOENT);
2081
2082         ei = PROC_I(inode);
2083         ei->op.proc_get_link = map_files_get_link;
2084
2085         inode->i_op = &proc_map_files_link_inode_operations;
2086         inode->i_size = 64;
2087
2088         d_set_d_op(dentry, &tid_map_files_dentry_operations);
2089         return d_splice_alias(inode, dentry);
2090 }
2091
2092 static struct dentry *proc_map_files_lookup(struct inode *dir,
2093                 struct dentry *dentry, unsigned int flags)
2094 {
2095         unsigned long vm_start, vm_end;
2096         struct vm_area_struct *vma;
2097         struct task_struct *task;
2098         struct dentry *result;
2099         struct mm_struct *mm;
2100
2101         result = ERR_PTR(-ENOENT);
2102         task = get_proc_task(dir);
2103         if (!task)
2104                 goto out;
2105
2106         result = ERR_PTR(-EACCES);
2107         if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2108                 goto out_put_task;
2109
2110         result = ERR_PTR(-ENOENT);
2111         if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2112                 goto out_put_task;
2113
2114         mm = get_task_mm(task);
2115         if (!mm)
2116                 goto out_put_task;
2117
2118         down_read(&mm->mmap_sem);
2119         vma = find_exact_vma(mm, vm_start, vm_end);
2120         if (!vma)
2121                 goto out_no_vma;
2122
2123         if (vma->vm_file)
2124                 result = proc_map_files_instantiate(dentry, task,
2125                                 (void *)(unsigned long)vma->vm_file->f_mode);
2126
2127 out_no_vma:
2128         up_read(&mm->mmap_sem);
2129         mmput(mm);
2130 out_put_task:
2131         put_task_struct(task);
2132 out:
2133         return result;
2134 }
2135
2136 static const struct inode_operations proc_map_files_inode_operations = {
2137         .lookup         = proc_map_files_lookup,
2138         .permission     = proc_fd_permission,
2139         .setattr        = proc_setattr,
2140 };
2141
2142 static int
2143 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2144 {
2145         struct vm_area_struct *vma;
2146         struct task_struct *task;
2147         struct mm_struct *mm;
2148         unsigned long nr_files, pos, i;
2149         GENRADIX(struct map_files_info) fa;
2150         struct map_files_info *p;
2151         int ret;
2152
2153         genradix_init(&fa);
2154
2155         ret = -ENOENT;
2156         task = get_proc_task(file_inode(file));
2157         if (!task)
2158                 goto out;
2159
2160         ret = -EACCES;
2161         if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2162                 goto out_put_task;
2163
2164         ret = 0;
2165         if (!dir_emit_dots(file, ctx))
2166                 goto out_put_task;
2167
2168         mm = get_task_mm(task);
2169         if (!mm)
2170                 goto out_put_task;
2171         down_read(&mm->mmap_sem);
2172
2173         nr_files = 0;
2174
2175         /*
2176          * We need two passes here:
2177          *
2178          *  1) Collect vmas of mapped files with mmap_sem taken
2179          *  2) Release mmap_sem and instantiate entries
2180          *
2181          * otherwise we get lockdep complained, since filldir()
2182          * routine might require mmap_sem taken in might_fault().
2183          */
2184
2185         for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2186                 if (!vma->vm_file)
2187                         continue;
2188                 if (++pos <= ctx->pos)
2189                         continue;
2190
2191                 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2192                 if (!p) {
2193                         ret = -ENOMEM;
2194                         up_read(&mm->mmap_sem);
2195                         mmput(mm);
2196                         goto out_put_task;
2197                 }
2198
2199                 p->start = vma->vm_start;
2200                 p->end = vma->vm_end;
2201                 p->mode = vma->vm_file->f_mode;
2202         }
2203         up_read(&mm->mmap_sem);
2204         mmput(mm);
2205
2206         for (i = 0; i < nr_files; i++) {
2207                 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2208                 unsigned int len;
2209
2210                 p = genradix_ptr(&fa, i);
2211                 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2212                 if (!proc_fill_cache(file, ctx,
2213                                       buf, len,
2214                                       proc_map_files_instantiate,
2215                                       task,
2216                                       (void *)(unsigned long)p->mode))
2217                         break;
2218                 ctx->pos++;
2219         }
2220
2221 out_put_task:
2222         put_task_struct(task);
2223 out:
2224         genradix_free(&fa);
2225         return ret;
2226 }
2227
2228 static const struct file_operations proc_map_files_operations = {
2229         .read           = generic_read_dir,
2230         .iterate_shared = proc_map_files_readdir,
2231         .llseek         = generic_file_llseek,
2232 };
2233
2234 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2235 struct timers_private {
2236         struct pid *pid;
2237         struct task_struct *task;
2238         struct sighand_struct *sighand;
2239         struct pid_namespace *ns;
2240         unsigned long flags;
2241 };
2242
2243 static void *timers_start(struct seq_file *m, loff_t *pos)
2244 {
2245         struct timers_private *tp = m->private;
2246
2247         tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2248         if (!tp->task)
2249                 return ERR_PTR(-ESRCH);
2250
2251         tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2252         if (!tp->sighand)
2253                 return ERR_PTR(-ESRCH);
2254
2255         return seq_list_start(&tp->task->signal->posix_timers, *pos);
2256 }
2257
2258 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2259 {
2260         struct timers_private *tp = m->private;
2261         return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2262 }
2263
2264 static void timers_stop(struct seq_file *m, void *v)
2265 {
2266         struct timers_private *tp = m->private;
2267
2268         if (tp->sighand) {
2269                 unlock_task_sighand(tp->task, &tp->flags);
2270                 tp->sighand = NULL;
2271         }
2272
2273         if (tp->task) {
2274                 put_task_struct(tp->task);
2275                 tp->task = NULL;
2276         }
2277 }
2278
2279 static int show_timer(struct seq_file *m, void *v)
2280 {
2281         struct k_itimer *timer;
2282         struct timers_private *tp = m->private;
2283         int notify;
2284         static const char * const nstr[] = {
2285                 [SIGEV_SIGNAL] = "signal",
2286                 [SIGEV_NONE] = "none",
2287                 [SIGEV_THREAD] = "thread",
2288         };
2289
2290         timer = list_entry((struct list_head *)v, struct k_itimer, list);
2291         notify = timer->it_sigev_notify;
2292
2293         seq_printf(m, "ID: %d\n", timer->it_id);
2294         seq_printf(m, "signal: %d/%px\n",
2295                    timer->sigq->info.si_signo,
2296                    timer->sigq->info.si_value.sival_ptr);
2297         seq_printf(m, "notify: %s/%s.%d\n",
2298                    nstr[notify & ~SIGEV_THREAD_ID],
2299                    (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2300                    pid_nr_ns(timer->it_pid, tp->ns));
2301         seq_printf(m, "ClockID: %d\n", timer->it_clock);
2302
2303         return 0;
2304 }
2305
2306 static const struct seq_operations proc_timers_seq_ops = {
2307         .start  = timers_start,
2308         .next   = timers_next,
2309         .stop   = timers_stop,
2310         .show   = show_timer,
2311 };
2312
2313 static int proc_timers_open(struct inode *inode, struct file *file)
2314 {
2315         struct timers_private *tp;
2316
2317         tp = __seq_open_private(file, &proc_timers_seq_ops,
2318                         sizeof(struct timers_private));
2319         if (!tp)
2320                 return -ENOMEM;
2321
2322         tp->pid = proc_pid(inode);
2323         tp->ns = proc_pid_ns(inode);
2324         return 0;
2325 }
2326
2327 static const struct file_operations proc_timers_operations = {
2328         .open           = proc_timers_open,
2329         .read           = seq_read,
2330         .llseek         = seq_lseek,
2331         .release        = seq_release_private,
2332 };
2333 #endif
2334
2335 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2336                                         size_t count, loff_t *offset)
2337 {
2338         struct inode *inode = file_inode(file);
2339         struct task_struct *p;
2340         u64 slack_ns;
2341         int err;
2342
2343         err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2344         if (err < 0)
2345                 return err;
2346
2347         p = get_proc_task(inode);
2348         if (!p)
2349                 return -ESRCH;
2350
2351         if (p != current) {
2352                 rcu_read_lock();
2353                 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2354                         rcu_read_unlock();
2355                         count = -EPERM;
2356                         goto out;
2357                 }
2358                 rcu_read_unlock();
2359
2360                 err = security_task_setscheduler(p);
2361                 if (err) {
2362                         count = err;
2363                         goto out;
2364                 }
2365         }
2366
2367         task_lock(p);
2368         if (slack_ns == 0)
2369                 p->timer_slack_ns = p->default_timer_slack_ns;
2370         else
2371                 p->timer_slack_ns = slack_ns;
2372         task_unlock(p);
2373
2374 out:
2375         put_task_struct(p);
2376
2377         return count;
2378 }
2379
2380 static int timerslack_ns_show(struct seq_file *m, void *v)
2381 {
2382         struct inode *inode = m->private;
2383         struct task_struct *p;
2384         int err = 0;
2385
2386         p = get_proc_task(inode);
2387         if (!p)
2388                 return -ESRCH;
2389
2390         if (p != current) {
2391                 rcu_read_lock();
2392                 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2393                         rcu_read_unlock();
2394                         err = -EPERM;
2395                         goto out;
2396                 }
2397                 rcu_read_unlock();
2398
2399                 err = security_task_getscheduler(p);
2400                 if (err)
2401                         goto out;
2402         }
2403
2404         task_lock(p);
2405         seq_printf(m, "%llu\n", p->timer_slack_ns);
2406         task_unlock(p);
2407
2408 out:
2409         put_task_struct(p);
2410
2411         return err;
2412 }
2413
2414 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2415 {
2416         return single_open(filp, timerslack_ns_show, inode);
2417 }
2418
2419 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2420         .open           = timerslack_ns_open,
2421         .read           = seq_read,
2422         .write          = timerslack_ns_write,
2423         .llseek         = seq_lseek,
2424         .release        = single_release,
2425 };
2426
2427 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2428         struct task_struct *task, const void *ptr)
2429 {
2430         const struct pid_entry *p = ptr;
2431         struct inode *inode;
2432         struct proc_inode *ei;
2433
2434         inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2435         if (!inode)
2436                 return ERR_PTR(-ENOENT);
2437
2438         ei = PROC_I(inode);
2439         if (S_ISDIR(inode->i_mode))
2440                 set_nlink(inode, 2);    /* Use getattr to fix if necessary */
2441         if (p->iop)
2442                 inode->i_op = p->iop;
2443         if (p->fop)
2444                 inode->i_fop = p->fop;
2445         ei->op = p->op;
2446         pid_update_inode(task, inode);
2447         d_set_d_op(dentry, &pid_dentry_operations);
2448         return d_splice_alias(inode, dentry);
2449 }
2450
2451 static struct dentry *proc_pident_lookup(struct inode *dir, 
2452                                          struct dentry *dentry,
2453                                          const struct pid_entry *p,
2454                                          const struct pid_entry *end)
2455 {
2456         struct task_struct *task = get_proc_task(dir);
2457         struct dentry *res = ERR_PTR(-ENOENT);
2458
2459         if (!task)
2460                 goto out_no_task;
2461
2462         /*
2463          * Yes, it does not scale. And it should not. Don't add
2464          * new entries into /proc/<tgid>/ without very good reasons.
2465          */
2466         for (; p < end; p++) {
2467                 if (p->len != dentry->d_name.len)
2468                         continue;
2469                 if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2470                         res = proc_pident_instantiate(dentry, task, p);
2471                         break;
2472                 }
2473         }
2474         put_task_struct(task);
2475 out_no_task:
2476         return res;
2477 }
2478
2479 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2480                 const struct pid_entry *ents, unsigned int nents)
2481 {
2482         struct task_struct *task = get_proc_task(file_inode(file));
2483         const struct pid_entry *p;
2484
2485         if (!task)
2486                 return -ENOENT;
2487
2488         if (!dir_emit_dots(file, ctx))
2489                 goto out;
2490
2491         if (ctx->pos >= nents + 2)
2492                 goto out;
2493
2494         for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2495                 if (!proc_fill_cache(file, ctx, p->name, p->len,
2496                                 proc_pident_instantiate, task, p))
2497                         break;
2498                 ctx->pos++;
2499         }
2500 out:
2501         put_task_struct(task);
2502         return 0;
2503 }
2504
2505 #ifdef CONFIG_SECURITY
2506 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2507                                   size_t count, loff_t *ppos)
2508 {
2509         struct inode * inode = file_inode(file);
2510         char *p = NULL;
2511         ssize_t length;
2512         struct task_struct *task = get_proc_task(inode);
2513
2514         if (!task)
2515                 return -ESRCH;
2516
2517         length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2518                                       (char*)file->f_path.dentry->d_name.name,
2519                                       &p);
2520         put_task_struct(task);
2521         if (length > 0)
2522                 length = simple_read_from_buffer(buf, count, ppos, p, length);
2523         kfree(p);
2524         return length;
2525 }
2526
2527 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2528                                    size_t count, loff_t *ppos)
2529 {
2530         struct inode * inode = file_inode(file);
2531         struct task_struct *task;
2532         void *page;
2533         int rv;
2534
2535         rcu_read_lock();
2536         task = pid_task(proc_pid(inode), PIDTYPE_PID);
2537         if (!task) {
2538                 rcu_read_unlock();
2539                 return -ESRCH;
2540         }
2541         /* A task may only write its own attributes. */
2542         if (current != task) {
2543                 rcu_read_unlock();
2544                 return -EACCES;
2545         }
2546         rcu_read_unlock();
2547
2548         if (count > PAGE_SIZE)
2549                 count = PAGE_SIZE;
2550
2551         /* No partial writes. */
2552         if (*ppos != 0)
2553                 return -EINVAL;
2554
2555         page = memdup_user(buf, count);
2556         if (IS_ERR(page)) {
2557                 rv = PTR_ERR(page);
2558                 goto out;
2559         }
2560
2561         /* Guard against adverse ptrace interaction */
2562         rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2563         if (rv < 0)
2564                 goto out_free;
2565
2566         rv = security_setprocattr(PROC_I(inode)->op.lsm,
2567                                   file->f_path.dentry->d_name.name, page,
2568                                   count);
2569         mutex_unlock(&current->signal->cred_guard_mutex);
2570 out_free:
2571         kfree(page);
2572 out:
2573         return rv;
2574 }
2575
2576 static const struct file_operations proc_pid_attr_operations = {
2577         .read           = proc_pid_attr_read,
2578         .write          = proc_pid_attr_write,
2579         .llseek         = generic_file_llseek,
2580 };
2581
2582 #define LSM_DIR_OPS(LSM) \
2583 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2584                              struct dir_context *ctx) \
2585 { \
2586         return proc_pident_readdir(filp, ctx, \
2587                                    LSM##_attr_dir_stuff, \
2588                                    ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2589 } \
2590 \
2591 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2592         .read           = generic_read_dir, \
2593         .iterate        = proc_##LSM##_attr_dir_iterate, \
2594         .llseek         = default_llseek, \
2595 }; \
2596 \
2597 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2598                                 struct dentry *dentry, unsigned int flags) \
2599 { \
2600         return proc_pident_lookup(dir, dentry, \
2601                                   LSM##_attr_dir_stuff, \
2602                                   LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2603 } \
2604 \
2605 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2606         .lookup         = proc_##LSM##_attr_dir_lookup, \
2607         .getattr        = pid_getattr, \
2608         .setattr        = proc_setattr, \
2609 }
2610
2611 #ifdef CONFIG_SECURITY_SMACK
2612 static const struct pid_entry smack_attr_dir_stuff[] = {
2613         ATTR("smack", "current",        0666),
2614 };
2615 LSM_DIR_OPS(smack);
2616 #endif
2617
2618 static const struct pid_entry attr_dir_stuff[] = {
2619         ATTR(NULL, "current",           0666),
2620         ATTR(NULL, "prev",              0444),
2621         ATTR(NULL, "exec",              0666),
2622         ATTR(NULL, "fscreate",          0666),
2623         ATTR(NULL, "keycreate",         0666),
2624         ATTR(NULL, "sockcreate",        0666),
2625 #ifdef CONFIG_SECURITY_SMACK
2626         DIR("smack",                    0555,
2627             proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2628 #endif
2629 };
2630
2631 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2632 {
2633         return proc_pident_readdir(file, ctx, 
2634                                    attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2635 }
2636
2637 static const struct file_operations proc_attr_dir_operations = {
2638         .read           = generic_read_dir,
2639         .iterate_shared = proc_attr_dir_readdir,
2640         .llseek         = generic_file_llseek,
2641 };
2642
2643 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2644                                 struct dentry *dentry, unsigned int flags)
2645 {
2646         return proc_pident_lookup(dir, dentry,
2647                                   attr_dir_stuff,
2648                                   attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2649 }
2650
2651 static const struct inode_operations proc_attr_dir_inode_operations = {
2652         .lookup         = proc_attr_dir_lookup,
2653         .getattr        = pid_getattr,
2654         .setattr        = proc_setattr,
2655 };
2656
2657 #endif
2658
2659 #ifdef CONFIG_ELF_CORE
2660 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2661                                          size_t count, loff_t *ppos)
2662 {
2663         struct task_struct *task = get_proc_task(file_inode(file));
2664         struct mm_struct *mm;
2665         char buffer[PROC_NUMBUF];
2666         size_t len;
2667         int ret;
2668
2669         if (!task)
2670                 return -ESRCH;
2671
2672         ret = 0;
2673         mm = get_task_mm(task);
2674         if (mm) {
2675                 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2676                                ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2677                                 MMF_DUMP_FILTER_SHIFT));
2678                 mmput(mm);
2679                 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2680         }
2681
2682         put_task_struct(task);
2683
2684         return ret;
2685 }
2686
2687 static ssize_t proc_coredump_filter_write(struct file *file,
2688                                           const char __user *buf,
2689                                           size_t count,
2690                                           loff_t *ppos)
2691 {
2692         struct task_struct *task;
2693         struct mm_struct *mm;
2694         unsigned int val;
2695         int ret;
2696         int i;
2697         unsigned long mask;
2698
2699         ret = kstrtouint_from_user(buf, count, 0, &val);
2700         if (ret < 0)
2701                 return ret;
2702
2703         ret = -ESRCH;
2704         task = get_proc_task(file_inode(file));
2705         if (!task)
2706                 goto out_no_task;
2707
2708         mm = get_task_mm(task);
2709         if (!mm)
2710                 goto out_no_mm;
2711         ret = 0;
2712
2713         for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2714                 if (val & mask)
2715                         set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2716                 else
2717                         clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2718         }
2719
2720         mmput(mm);
2721  out_no_mm:
2722         put_task_struct(task);
2723  out_no_task:
2724         if (ret < 0)
2725                 return ret;
2726         return count;
2727 }
2728
2729 static const struct file_operations proc_coredump_filter_operations = {
2730         .read           = proc_coredump_filter_read,
2731         .write          = proc_coredump_filter_write,
2732         .llseek         = generic_file_llseek,
2733 };
2734 #endif
2735
2736 #ifdef CONFIG_TASK_IO_ACCOUNTING
2737 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2738 {
2739         struct task_io_accounting acct = task->ioac;
2740         unsigned long flags;
2741         int result;
2742
2743         result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2744         if (result)
2745                 return result;
2746
2747         if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2748                 result = -EACCES;
2749                 goto out_unlock;
2750         }
2751
2752         if (whole && lock_task_sighand(task, &flags)) {
2753                 struct task_struct *t = task;
2754
2755                 task_io_accounting_add(&acct, &task->signal->ioac);
2756                 while_each_thread(task, t)
2757                         task_io_accounting_add(&acct, &t->ioac);
2758
2759                 unlock_task_sighand(task, &flags);
2760         }
2761         seq_printf(m,
2762                    "rchar: %llu\n"
2763                    "wchar: %llu\n"
2764                    "syscr: %llu\n"
2765                    "syscw: %llu\n"
2766                    "read_bytes: %llu\n"
2767                    "write_bytes: %llu\n"
2768                    "cancelled_write_bytes: %llu\n",
2769                    (unsigned long long)acct.rchar,
2770                    (unsigned long long)acct.wchar,
2771                    (unsigned long long)acct.syscr,
2772                    (unsigned long long)acct.syscw,
2773                    (unsigned long long)acct.read_bytes,
2774                    (unsigned long long)acct.write_bytes,
2775                    (unsigned long long)acct.cancelled_write_bytes);
2776         result = 0;
2777
2778 out_unlock:
2779         mutex_unlock(&task->signal->cred_guard_mutex);
2780         return result;
2781 }
2782
2783 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2784                                   struct pid *pid, struct task_struct *task)
2785 {
2786         return do_io_accounting(task, m, 0);
2787 }
2788
2789 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2790                                    struct pid *pid, struct task_struct *task)
2791 {
2792         return do_io_accounting(task, m, 1);
2793 }
2794 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2795
2796 #ifdef CONFIG_USER_NS
2797 static int proc_id_map_open(struct inode *inode, struct file *file,
2798         const struct seq_operations *seq_ops)
2799 {
2800         struct user_namespace *ns = NULL;
2801         struct task_struct *task;
2802         struct seq_file *seq;
2803         int ret = -EINVAL;
2804
2805         task = get_proc_task(inode);
2806         if (task) {
2807                 rcu_read_lock();
2808                 ns = get_user_ns(task_cred_xxx(task, user_ns));
2809                 rcu_read_unlock();
2810                 put_task_struct(task);
2811         }
2812         if (!ns)
2813                 goto err;
2814
2815         ret = seq_open(file, seq_ops);
2816         if (ret)
2817                 goto err_put_ns;
2818
2819         seq = file->private_data;
2820         seq->private = ns;
2821
2822         return 0;
2823 err_put_ns:
2824         put_user_ns(ns);
2825 err:
2826         return ret;
2827 }
2828
2829 static int proc_id_map_release(struct inode *inode, struct file *file)
2830 {
2831         struct seq_file *seq = file->private_data;
2832         struct user_namespace *ns = seq->private;
2833         put_user_ns(ns);
2834         return seq_release(inode, file);
2835 }
2836
2837 static int proc_uid_map_open(struct inode *inode, struct file *file)
2838 {
2839         return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2840 }
2841
2842 static int proc_gid_map_open(struct inode *inode, struct file *file)
2843 {
2844         return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2845 }
2846
2847 static int proc_projid_map_open(struct inode *inode, struct file *file)
2848 {
2849         return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2850 }
2851
2852 static const struct file_operations proc_uid_map_operations = {
2853         .open           = proc_uid_map_open,
2854         .write          = proc_uid_map_write,
2855         .read           = seq_read,
2856         .llseek         = seq_lseek,
2857         .release        = proc_id_map_release,
2858 };
2859
2860 static const struct file_operations proc_gid_map_operations = {
2861         .open           = proc_gid_map_open,
2862         .write          = proc_gid_map_write,
2863         .read           = seq_read,
2864         .llseek         = seq_lseek,
2865         .release        = proc_id_map_release,
2866 };
2867
2868 static const struct file_operations proc_projid_map_operations = {
2869         .open           = proc_projid_map_open,
2870         .write          = proc_projid_map_write,
2871         .read           = seq_read,
2872         .llseek         = seq_lseek,
2873         .release        = proc_id_map_release,
2874 };
2875
2876 static int proc_setgroups_open(struct inode *inode, struct file *file)
2877 {
2878         struct user_namespace *ns = NULL;
2879         struct task_struct *task;
2880         int ret;
2881
2882         ret = -ESRCH;
2883         task = get_proc_task(inode);
2884         if (task) {
2885                 rcu_read_lock();
2886                 ns = get_user_ns(task_cred_xxx(task, user_ns));
2887                 rcu_read_unlock();
2888                 put_task_struct(task);
2889         }
2890         if (!ns)
2891                 goto err;
2892
2893         if (file->f_mode & FMODE_WRITE) {
2894                 ret = -EACCES;
2895                 if (!ns_capable(ns, CAP_SYS_ADMIN))
2896                         goto err_put_ns;
2897         }
2898
2899         ret = single_open(file, &proc_setgroups_show, ns);
2900         if (ret)
2901                 goto err_put_ns;
2902
2903         return 0;
2904 err_put_ns:
2905         put_user_ns(ns);
2906 err:
2907         return ret;
2908 }
2909
2910 static int proc_setgroups_release(struct inode *inode, struct file *file)
2911 {
2912         struct seq_file *seq = file->private_data;
2913         struct user_namespace *ns = seq->private;
2914         int ret = single_release(inode, file);
2915         put_user_ns(ns);
2916         return ret;
2917 }
2918
2919 static const struct file_operations proc_setgroups_operations = {
2920         .open           = proc_setgroups_open,
2921         .write          = proc_setgroups_write,
2922         .read           = seq_read,
2923         .llseek         = seq_lseek,
2924         .release        = proc_setgroups_release,
2925 };
2926 #endif /* CONFIG_USER_NS */
2927
2928 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2929                                 struct pid *pid, struct task_struct *task)
2930 {
2931         int err = lock_trace(task);
2932         if (!err) {
2933                 seq_printf(m, "%08x\n", task->personality);
2934                 unlock_trace(task);
2935         }
2936         return err;
2937 }
2938
2939 #ifdef CONFIG_LIVEPATCH
2940 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2941                                 struct pid *pid, struct task_struct *task)
2942 {
2943         seq_printf(m, "%d\n", task->patch_state);
2944         return 0;
2945 }
2946 #endif /* CONFIG_LIVEPATCH */
2947
2948 #ifdef CONFIG_STACKLEAK_METRICS
2949 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
2950                                 struct pid *pid, struct task_struct *task)
2951 {
2952         unsigned long prev_depth = THREAD_SIZE -
2953                                 (task->prev_lowest_stack & (THREAD_SIZE - 1));
2954         unsigned long depth = THREAD_SIZE -
2955                                 (task->lowest_stack & (THREAD_SIZE - 1));
2956
2957         seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
2958                                                         prev_depth, depth);
2959         return 0;
2960 }
2961 #endif /* CONFIG_STACKLEAK_METRICS */
2962
2963 /*
2964  * Thread groups
2965  */
2966 static const struct file_operations proc_task_operations;
2967 static const struct inode_operations proc_task_inode_operations;
2968
2969 static const struct pid_entry tgid_base_stuff[] = {
2970         DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2971         DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2972         DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2973         DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2974         DIR("ns",         S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2975 #ifdef CONFIG_NET
2976         DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2977 #endif
2978         REG("environ",    S_IRUSR, proc_environ_operations),
2979         REG("auxv",       S_IRUSR, proc_auxv_operations),
2980         ONE("status",     S_IRUGO, proc_pid_status),
2981         ONE("personality", S_IRUSR, proc_pid_personality),
2982         ONE("limits",     S_IRUGO, proc_pid_limits),
2983 #ifdef CONFIG_SCHED_DEBUG
2984         REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2985 #endif
2986 #ifdef CONFIG_SCHED_AUTOGROUP
2987         REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2988 #endif
2989         REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2990 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2991         ONE("syscall",    S_IRUSR, proc_pid_syscall),
2992 #endif
2993         REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2994         ONE("stat",       S_IRUGO, proc_tgid_stat),
2995         ONE("statm",      S_IRUGO, proc_pid_statm),
2996         REG("maps",       S_IRUGO, proc_pid_maps_operations),
2997 #ifdef CONFIG_NUMA
2998         REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2999 #endif
3000         REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3001         LNK("cwd",        proc_cwd_link),
3002         LNK("root",       proc_root_link),
3003         LNK("exe",        proc_exe_link),
3004         REG("mounts",     S_IRUGO, proc_mounts_operations),
3005         REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3006         REG("mountstats", S_IRUSR, proc_mountstats_operations),
3007 #ifdef CONFIG_PROC_PAGE_MONITOR
3008         REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3009         REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3010         REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3011         REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3012 #endif
3013 #ifdef CONFIG_SECURITY
3014         DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3015 #endif
3016 #ifdef CONFIG_KALLSYMS
3017         ONE("wchan",      S_IRUGO, proc_pid_wchan),
3018 #endif
3019 #ifdef CONFIG_STACKTRACE
3020         ONE("stack",      S_IRUSR, proc_pid_stack),
3021 #endif
3022 #ifdef CONFIG_SCHED_INFO
3023         ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3024 #endif
3025 #ifdef CONFIG_LATENCYTOP
3026         REG("latency",  S_IRUGO, proc_lstats_operations),
3027 #endif
3028 #ifdef CONFIG_PROC_PID_CPUSET
3029         ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3030 #endif
3031 #ifdef CONFIG_CGROUPS
3032         ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3033 #endif
3034         ONE("oom_score",  S_IRUGO, proc_oom_score),
3035         REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3036         REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3037 #ifdef CONFIG_AUDIT
3038         REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3039         REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3040 #endif
3041 #ifdef CONFIG_FAULT_INJECTION
3042         REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3043         REG("fail-nth", 0644, proc_fail_nth_operations),
3044 #endif
3045 #ifdef CONFIG_ELF_CORE
3046         REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3047 #endif
3048 #ifdef CONFIG_TASK_IO_ACCOUNTING
3049         ONE("io",       S_IRUSR, proc_tgid_io_accounting),
3050 #endif
3051 #ifdef CONFIG_USER_NS
3052         REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3053         REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3054         REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3055         REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3056 #endif
3057 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3058         REG("timers",     S_IRUGO, proc_timers_operations),
3059 #endif
3060         REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3061 #ifdef CONFIG_LIVEPATCH
3062         ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3063 #endif
3064 #ifdef CONFIG_STACKLEAK_METRICS
3065         ONE("stack_depth", S_IRUGO, proc_stack_depth),
3066 #endif
3067 };
3068
3069 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3070 {
3071         return proc_pident_readdir(file, ctx,
3072                                    tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3073 }
3074
3075 static const struct file_operations proc_tgid_base_operations = {
3076         .read           = generic_read_dir,
3077         .iterate_shared = proc_tgid_base_readdir,
3078         .llseek         = generic_file_llseek,
3079 };
3080
3081 struct pid *tgid_pidfd_to_pid(const struct file *file)
3082 {
3083         if (!d_is_dir(file->f_path.dentry) ||
3084             (file->f_op != &proc_tgid_base_operations))
3085                 return ERR_PTR(-EBADF);
3086
3087         return proc_pid(file_inode(file));
3088 }
3089
3090 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3091 {
3092         return proc_pident_lookup(dir, dentry,
3093                                   tgid_base_stuff,
3094                                   tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3095 }
3096
3097 static const struct inode_operations proc_tgid_base_inode_operations = {
3098         .lookup         = proc_tgid_base_lookup,
3099         .getattr        = pid_getattr,
3100         .setattr        = proc_setattr,
3101         .permission     = proc_pid_permission,
3102 };
3103
3104 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3105 {
3106         struct dentry *dentry, *leader, *dir;
3107         char buf[10 + 1];
3108         struct qstr name;
3109
3110         name.name = buf;
3111         name.len = snprintf(buf, sizeof(buf), "%u", pid);
3112         /* no ->d_hash() rejects on procfs */
3113         dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3114         if (dentry) {
3115                 d_invalidate(dentry);
3116                 dput(dentry);
3117         }
3118
3119         if (pid == tgid)
3120                 return;
3121
3122         name.name = buf;
3123         name.len = snprintf(buf, sizeof(buf), "%u", tgid);
3124         leader = d_hash_and_lookup(mnt->mnt_root, &name);
3125         if (!leader)
3126                 goto out;
3127
3128         name.name = "task";
3129         name.len = strlen(name.name);
3130         dir = d_hash_and_lookup(leader, &name);
3131         if (!dir)
3132                 goto out_put_leader;
3133
3134         name.name = buf;
3135         name.len = snprintf(buf, sizeof(buf), "%u", pid);
3136         dentry = d_hash_and_lookup(dir, &name);
3137         if (dentry) {
3138                 d_invalidate(dentry);
3139                 dput(dentry);
3140         }
3141
3142         dput(dir);
3143 out_put_leader:
3144         dput(leader);
3145 out:
3146         return;
3147 }
3148
3149 /**
3150  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3151  * @task: task that should be flushed.
3152  *
3153  * When flushing dentries from proc, one needs to flush them from global
3154  * proc (proc_mnt) and from all the namespaces' procs this task was seen
3155  * in. This call is supposed to do all of this job.
3156  *
3157  * Looks in the dcache for
3158  * /proc/@pid
3159  * /proc/@tgid/task/@pid
3160  * if either directory is present flushes it and all of it'ts children
3161  * from the dcache.
3162  *
3163  * It is safe and reasonable to cache /proc entries for a task until
3164  * that task exits.  After that they just clog up the dcache with
3165  * useless entries, possibly causing useful dcache entries to be
3166  * flushed instead.  This routine is proved to flush those useless
3167  * dcache entries at process exit time.
3168  *
3169  * NOTE: This routine is just an optimization so it does not guarantee
3170  *       that no dcache entries will exist at process exit time it
3171  *       just makes it very unlikely that any will persist.
3172  */
3173
3174 void proc_flush_task(struct task_struct *task)
3175 {
3176         int i;
3177         struct pid *pid, *tgid;
3178         struct upid *upid;
3179
3180         pid = task_pid(task);
3181         tgid = task_tgid(task);
3182
3183         for (i = 0; i <= pid->level; i++) {
3184                 upid = &pid->numbers[i];
3185                 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3186                                         tgid->numbers[i].nr);
3187         }
3188 }
3189
3190 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3191                                    struct task_struct *task, const void *ptr)
3192 {
3193         struct inode *inode;
3194
3195         inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3196         if (!inode)
3197                 return ERR_PTR(-ENOENT);
3198
3199         inode->i_op = &proc_tgid_base_inode_operations;
3200         inode->i_fop = &proc_tgid_base_operations;
3201         inode->i_flags|=S_IMMUTABLE;
3202
3203         set_nlink(inode, nlink_tgid);
3204         pid_update_inode(task, inode);
3205
3206         d_set_d_op(dentry, &pid_dentry_operations);
3207         return d_splice_alias(inode, dentry);
3208 }
3209
3210 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3211 {
3212         struct task_struct *task;
3213         unsigned tgid;
3214         struct pid_namespace *ns;
3215         struct dentry *result = ERR_PTR(-ENOENT);
3216
3217         tgid = name_to_int(&dentry->d_name);
3218         if (tgid == ~0U)
3219                 goto out;
3220
3221         ns = dentry->d_sb->s_fs_info;
3222         rcu_read_lock();
3223         task = find_task_by_pid_ns(tgid, ns);
3224         if (task)
3225                 get_task_struct(task);
3226         rcu_read_unlock();
3227         if (!task)
3228                 goto out;
3229
3230         result = proc_pid_instantiate(dentry, task, NULL);
3231         put_task_struct(task);
3232 out:
3233         return result;
3234 }
3235
3236 /*
3237  * Find the first task with tgid >= tgid
3238  *
3239  */
3240 struct tgid_iter {
3241         unsigned int tgid;
3242         struct task_struct *task;
3243 };
3244 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3245 {
3246         struct pid *pid;
3247
3248         if (iter.task)
3249                 put_task_struct(iter.task);
3250         rcu_read_lock();
3251 retry:
3252         iter.task = NULL;
3253         pid = find_ge_pid(iter.tgid, ns);
3254         if (pid) {
3255                 iter.tgid = pid_nr_ns(pid, ns);
3256                 iter.task = pid_task(pid, PIDTYPE_PID);
3257                 /* What we to know is if the pid we have find is the
3258                  * pid of a thread_group_leader.  Testing for task
3259                  * being a thread_group_leader is the obvious thing
3260                  * todo but there is a window when it fails, due to
3261                  * the pid transfer logic in de_thread.
3262                  *
3263                  * So we perform the straight forward test of seeing
3264                  * if the pid we have found is the pid of a thread
3265                  * group leader, and don't worry if the task we have
3266                  * found doesn't happen to be a thread group leader.
3267                  * As we don't care in the case of readdir.
3268                  */
3269                 if (!iter.task || !has_group_leader_pid(iter.task)) {
3270                         iter.tgid += 1;
3271                         goto retry;
3272                 }
3273                 get_task_struct(iter.task);
3274         }
3275         rcu_read_unlock();
3276         return iter;
3277 }
3278
3279 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3280
3281 /* for the /proc/ directory itself, after non-process stuff has been done */
3282 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3283 {
3284         struct tgid_iter iter;
3285         struct pid_namespace *ns = proc_pid_ns(file_inode(file));
3286         loff_t pos = ctx->pos;
3287
3288         if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3289                 return 0;
3290
3291         if (pos == TGID_OFFSET - 2) {
3292                 struct inode *inode = d_inode(ns->proc_self);
3293                 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3294                         return 0;
3295                 ctx->pos = pos = pos + 1;
3296         }
3297         if (pos == TGID_OFFSET - 1) {
3298                 struct inode *inode = d_inode(ns->proc_thread_self);
3299                 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3300                         return 0;
3301                 ctx->pos = pos = pos + 1;
3302         }
3303         iter.tgid = pos - TGID_OFFSET;
3304         iter.task = NULL;
3305         for (iter = next_tgid(ns, iter);
3306              iter.task;
3307              iter.tgid += 1, iter = next_tgid(ns, iter)) {
3308                 char name[10 + 1];
3309                 unsigned int len;
3310
3311                 cond_resched();
3312                 if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3313                         continue;
3314
3315                 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3316                 ctx->pos = iter.tgid + TGID_OFFSET;
3317                 if (!proc_fill_cache(file, ctx, name, len,
3318                                      proc_pid_instantiate, iter.task, NULL)) {
3319                         put_task_struct(iter.task);
3320                         return 0;
3321                 }
3322         }
3323         ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3324         return 0;
3325 }
3326
3327 /*
3328  * proc_tid_comm_permission is a special permission function exclusively
3329  * used for the node /proc/<pid>/task/<tid>/comm.
3330  * It bypasses generic permission checks in the case where a task of the same
3331  * task group attempts to access the node.
3332  * The rationale behind this is that glibc and bionic access this node for
3333  * cross thread naming (pthread_set/getname_np(!self)). However, if
3334  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3335  * which locks out the cross thread naming implementation.
3336  * This function makes sure that the node is always accessible for members of
3337  * same thread group.
3338  */
3339 static int proc_tid_comm_permission(struct inode *inode, int mask)
3340 {
3341         bool is_same_tgroup;
3342         struct task_struct *task;
3343
3344         task = get_proc_task(inode);
3345         if (!task)
3346                 return -ESRCH;
3347         is_same_tgroup = same_thread_group(current, task);
3348         put_task_struct(task);
3349
3350         if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3351                 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3352                  * read or written by the members of the corresponding
3353                  * thread group.
3354                  */
3355                 return 0;
3356         }
3357
3358         return generic_permission(inode, mask);
3359 }
3360
3361 static const struct inode_operations proc_tid_comm_inode_operations = {
3362                 .permission = proc_tid_comm_permission,
3363 };
3364
3365 /*
3366  * Tasks
3367  */
3368 static const struct pid_entry tid_base_stuff[] = {
3369         DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3370         DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3371         DIR("ns",        S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3372 #ifdef CONFIG_NET
3373         DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3374 #endif
3375         REG("environ",   S_IRUSR, proc_environ_operations),
3376         REG("auxv",      S_IRUSR, proc_auxv_operations),
3377         ONE("status",    S_IRUGO, proc_pid_status),
3378         ONE("personality", S_IRUSR, proc_pid_personality),
3379         ONE("limits",    S_IRUGO, proc_pid_limits),
3380 #ifdef CONFIG_SCHED_DEBUG
3381         REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3382 #endif
3383         NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3384                          &proc_tid_comm_inode_operations,
3385                          &proc_pid_set_comm_operations, {}),
3386 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3387         ONE("syscall",   S_IRUSR, proc_pid_syscall),
3388 #endif
3389         REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3390         ONE("stat",      S_IRUGO, proc_tid_stat),
3391         ONE("statm",     S_IRUGO, proc_pid_statm),
3392         REG("maps",      S_IRUGO, proc_pid_maps_operations),
3393 #ifdef CONFIG_PROC_CHILDREN
3394         REG("children",  S_IRUGO, proc_tid_children_operations),
3395 #endif
3396 #ifdef CONFIG_NUMA
3397         REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3398 #endif
3399         REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3400         LNK("cwd",       proc_cwd_link),
3401         LNK("root",      proc_root_link),
3402         LNK("exe",       proc_exe_link),
3403         REG("mounts",    S_IRUGO, proc_mounts_operations),
3404         REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3405 #ifdef CONFIG_PROC_PAGE_MONITOR
3406         REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3407         REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3408         REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3409         REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3410 #endif
3411 #ifdef CONFIG_SECURITY
3412         DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3413 #endif
3414 #ifdef CONFIG_KALLSYMS
3415         ONE("wchan",     S_IRUGO, proc_pid_wchan),
3416 #endif
3417 #ifdef CONFIG_STACKTRACE
3418         ONE("stack",      S_IRUSR, proc_pid_stack),
3419 #endif
3420 #ifdef CONFIG_SCHED_INFO
3421         ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3422 #endif
3423 #ifdef CONFIG_LATENCYTOP
3424         REG("latency",  S_IRUGO, proc_lstats_operations),
3425 #endif
3426 #ifdef CONFIG_PROC_PID_CPUSET
3427         ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3428 #endif
3429 #ifdef CONFIG_CGROUPS
3430         ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3431 #endif
3432         ONE("oom_score", S_IRUGO, proc_oom_score),
3433         REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3434         REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3435 #ifdef CONFIG_AUDIT
3436         REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3437         REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3438 #endif
3439 #ifdef CONFIG_FAULT_INJECTION
3440         REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3441         REG("fail-nth", 0644, proc_fail_nth_operations),
3442 #endif
3443 #ifdef CONFIG_TASK_IO_ACCOUNTING
3444         ONE("io",       S_IRUSR, proc_tid_io_accounting),
3445 #endif
3446 #ifdef CONFIG_USER_NS
3447         REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3448         REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3449         REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3450         REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3451 #endif
3452 #ifdef CONFIG_LIVEPATCH
3453         ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3454 #endif
3455 };
3456
3457 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3458 {
3459         return proc_pident_readdir(file, ctx,
3460                                    tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3461 }
3462
3463 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3464 {
3465         return proc_pident_lookup(dir, dentry,
3466                                   tid_base_stuff,
3467                                   tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3468 }
3469
3470 static const struct file_operations proc_tid_base_operations = {
3471         .read           = generic_read_dir,
3472         .iterate_shared = proc_tid_base_readdir,
3473         .llseek         = generic_file_llseek,
3474 };
3475
3476 static const struct inode_operations proc_tid_base_inode_operations = {
3477         .lookup         = proc_tid_base_lookup,
3478         .getattr        = pid_getattr,
3479         .setattr        = proc_setattr,
3480 };
3481
3482 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3483         struct task_struct *task, const void *ptr)
3484 {
3485         struct inode *inode;
3486         inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3487         if (!inode)
3488                 return ERR_PTR(-ENOENT);
3489
3490         inode->i_op = &proc_tid_base_inode_operations;
3491         inode->i_fop = &proc_tid_base_operations;
3492         inode->i_flags |= S_IMMUTABLE;
3493
3494         set_nlink(inode, nlink_tid);
3495         pid_update_inode(task, inode);
3496
3497         d_set_d_op(dentry, &pid_dentry_operations);
3498         return d_splice_alias(inode, dentry);
3499 }
3500
3501 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3502 {
3503         struct task_struct *task;
3504         struct task_struct *leader = get_proc_task(dir);
3505         unsigned tid;
3506         struct pid_namespace *ns;
3507         struct dentry *result = ERR_PTR(-ENOENT);
3508
3509         if (!leader)
3510                 goto out_no_task;
3511
3512         tid = name_to_int(&dentry->d_name);
3513         if (tid == ~0U)
3514                 goto out;
3515
3516         ns = dentry->d_sb->s_fs_info;
3517         rcu_read_lock();
3518         task = find_task_by_pid_ns(tid, ns);
3519         if (task)
3520                 get_task_struct(task);
3521         rcu_read_unlock();
3522         if (!task)
3523                 goto out;
3524         if (!same_thread_group(leader, task))
3525                 goto out_drop_task;
3526
3527         result = proc_task_instantiate(dentry, task, NULL);
3528 out_drop_task:
3529         put_task_struct(task);
3530 out:
3531         put_task_struct(leader);
3532 out_no_task:
3533         return result;
3534 }
3535
3536 /*
3537  * Find the first tid of a thread group to return to user space.
3538  *
3539  * Usually this is just the thread group leader, but if the users
3540  * buffer was too small or there was a seek into the middle of the
3541  * directory we have more work todo.
3542  *
3543  * In the case of a short read we start with find_task_by_pid.
3544  *
3545  * In the case of a seek we start with the leader and walk nr
3546  * threads past it.
3547  */
3548 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3549                                         struct pid_namespace *ns)
3550 {
3551         struct task_struct *pos, *task;
3552         unsigned long nr = f_pos;
3553
3554         if (nr != f_pos)        /* 32bit overflow? */
3555                 return NULL;
3556
3557         rcu_read_lock();
3558         task = pid_task(pid, PIDTYPE_PID);
3559         if (!task)
3560                 goto fail;
3561
3562         /* Attempt to start with the tid of a thread */
3563         if (tid && nr) {
3564                 pos = find_task_by_pid_ns(tid, ns);
3565                 if (pos && same_thread_group(pos, task))
3566                         goto found;
3567         }
3568
3569         /* If nr exceeds the number of threads there is nothing todo */
3570         if (nr >= get_nr_threads(task))
3571                 goto fail;
3572
3573         /* If we haven't found our starting place yet start
3574          * with the leader and walk nr threads forward.
3575          */
3576         pos = task = task->group_leader;
3577         do {
3578                 if (!nr--)
3579                         goto found;
3580         } while_each_thread(task, pos);
3581 fail:
3582         pos = NULL;
3583         goto out;
3584 found:
3585         get_task_struct(pos);
3586 out:
3587         rcu_read_unlock();
3588         return pos;
3589 }
3590
3591 /*
3592  * Find the next thread in the thread list.
3593  * Return NULL if there is an error or no next thread.
3594  *
3595  * The reference to the input task_struct is released.
3596  */
3597 static struct task_struct *next_tid(struct task_struct *start)
3598 {
3599         struct task_struct *pos = NULL;
3600         rcu_read_lock();
3601         if (pid_alive(start)) {
3602                 pos = next_thread(start);
3603                 if (thread_group_leader(pos))
3604                         pos = NULL;
3605                 else
3606                         get_task_struct(pos);
3607         }
3608         rcu_read_unlock();
3609         put_task_struct(start);
3610         return pos;
3611 }
3612
3613 /* for the /proc/TGID/task/ directories */
3614 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3615 {
3616         struct inode *inode = file_inode(file);
3617         struct task_struct *task;
3618         struct pid_namespace *ns;
3619         int tid;
3620
3621         if (proc_inode_is_dead(inode))
3622                 return -ENOENT;
3623
3624         if (!dir_emit_dots(file, ctx))
3625                 return 0;
3626
3627         /* f_version caches the tgid value that the last readdir call couldn't
3628          * return. lseek aka telldir automagically resets f_version to 0.
3629          */
3630         ns = proc_pid_ns(inode);
3631         tid = (int)file->f_version;
3632         file->f_version = 0;
3633         for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3634              task;
3635              task = next_tid(task), ctx->pos++) {
3636                 char name[10 + 1];
3637                 unsigned int len;
3638                 tid = task_pid_nr_ns(task, ns);
3639                 len = snprintf(name, sizeof(name), "%u", tid);
3640                 if (!proc_fill_cache(file, ctx, name, len,
3641                                 proc_task_instantiate, task, NULL)) {
3642                         /* returning this tgid failed, save it as the first
3643                          * pid for the next readir call */
3644                         file->f_version = (u64)tid;
3645                         put_task_struct(task);
3646                         break;
3647                 }
3648         }
3649
3650         return 0;
3651 }
3652
3653 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3654                              u32 request_mask, unsigned int query_flags)
3655 {
3656         struct inode *inode = d_inode(path->dentry);
3657         struct task_struct *p = get_proc_task(inode);
3658         generic_fillattr(inode, stat);
3659
3660         if (p) {
3661                 stat->nlink += get_nr_threads(p);
3662                 put_task_struct(p);
3663         }
3664
3665         return 0;
3666 }
3667
3668 static const struct inode_operations proc_task_inode_operations = {
3669         .lookup         = proc_task_lookup,
3670         .getattr        = proc_task_getattr,
3671         .setattr        = proc_setattr,
3672         .permission     = proc_pid_permission,
3673 };
3674
3675 static const struct file_operations proc_task_operations = {
3676         .read           = generic_read_dir,
3677         .iterate_shared = proc_task_readdir,
3678         .llseek         = generic_file_llseek,
3679 };
3680
3681 void __init set_proc_pid_nlink(void)
3682 {
3683         nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3684         nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3685 }