swsusp: use GFP_KERNEL for creating basic data structures
[powerpc.git] / kernel / power / snapshot.c
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/smp_lock.h>
18 #include <linux/delay.h>
19 #include <linux/bitops.h>
20 #include <linux/spinlock.h>
21 #include <linux/kernel.h>
22 #include <linux/pm.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/bootmem.h>
26 #include <linux/syscalls.h>
27 #include <linux/console.h>
28 #include <linux/highmem.h>
29
30 #include <asm/uaccess.h>
31 #include <asm/mmu_context.h>
32 #include <asm/pgtable.h>
33 #include <asm/tlbflush.h>
34 #include <asm/io.h>
35
36 #include "power.h"
37
38 static int swsusp_page_is_free(struct page *);
39 static void swsusp_set_page_forbidden(struct page *);
40 static void swsusp_unset_page_forbidden(struct page *);
41
42 /* List of PBEs needed for restoring the pages that were allocated before
43  * the suspend and included in the suspend image, but have also been
44  * allocated by the "resume" kernel, so their contents cannot be written
45  * directly to their "original" page frames.
46  */
47 struct pbe *restore_pblist;
48
49 /* Pointer to an auxiliary buffer (1 page) */
50 static void *buffer;
51
52 /**
53  *      @safe_needed - on resume, for storing the PBE list and the image,
54  *      we can only use memory pages that do not conflict with the pages
55  *      used before suspend.  The unsafe pages have PageNosaveFree set
56  *      and we count them using unsafe_pages.
57  *
58  *      Each allocated image page is marked as PageNosave and PageNosaveFree
59  *      so that swsusp_free() can release it.
60  */
61
62 #define PG_ANY          0
63 #define PG_SAFE         1
64 #define PG_UNSAFE_CLEAR 1
65 #define PG_UNSAFE_KEEP  0
66
67 static unsigned int allocated_unsafe_pages;
68
69 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
70 {
71         void *res;
72
73         res = (void *)get_zeroed_page(gfp_mask);
74         if (safe_needed)
75                 while (res && swsusp_page_is_free(virt_to_page(res))) {
76                         /* The page is unsafe, mark it for swsusp_free() */
77                         swsusp_set_page_forbidden(virt_to_page(res));
78                         allocated_unsafe_pages++;
79                         res = (void *)get_zeroed_page(gfp_mask);
80                 }
81         if (res) {
82                 swsusp_set_page_forbidden(virt_to_page(res));
83                 swsusp_set_page_free(virt_to_page(res));
84         }
85         return res;
86 }
87
88 unsigned long get_safe_page(gfp_t gfp_mask)
89 {
90         return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
91 }
92
93 static struct page *alloc_image_page(gfp_t gfp_mask)
94 {
95         struct page *page;
96
97         page = alloc_page(gfp_mask);
98         if (page) {
99                 swsusp_set_page_forbidden(page);
100                 swsusp_set_page_free(page);
101         }
102         return page;
103 }
104
105 /**
106  *      free_image_page - free page represented by @addr, allocated with
107  *      get_image_page (page flags set by it must be cleared)
108  */
109
110 static inline void free_image_page(void *addr, int clear_nosave_free)
111 {
112         struct page *page;
113
114         BUG_ON(!virt_addr_valid(addr));
115
116         page = virt_to_page(addr);
117
118         swsusp_unset_page_forbidden(page);
119         if (clear_nosave_free)
120                 swsusp_unset_page_free(page);
121
122         __free_page(page);
123 }
124
125 /* struct linked_page is used to build chains of pages */
126
127 #define LINKED_PAGE_DATA_SIZE   (PAGE_SIZE - sizeof(void *))
128
129 struct linked_page {
130         struct linked_page *next;
131         char data[LINKED_PAGE_DATA_SIZE];
132 } __attribute__((packed));
133
134 static inline void
135 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
136 {
137         while (list) {
138                 struct linked_page *lp = list->next;
139
140                 free_image_page(list, clear_page_nosave);
141                 list = lp;
142         }
143 }
144
145 /**
146   *     struct chain_allocator is used for allocating small objects out of
147   *     a linked list of pages called 'the chain'.
148   *
149   *     The chain grows each time when there is no room for a new object in
150   *     the current page.  The allocated objects cannot be freed individually.
151   *     It is only possible to free them all at once, by freeing the entire
152   *     chain.
153   *
154   *     NOTE: The chain allocator may be inefficient if the allocated objects
155   *     are not much smaller than PAGE_SIZE.
156   */
157
158 struct chain_allocator {
159         struct linked_page *chain;      /* the chain */
160         unsigned int used_space;        /* total size of objects allocated out
161                                          * of the current page
162                                          */
163         gfp_t gfp_mask;         /* mask for allocating pages */
164         int safe_needed;        /* if set, only "safe" pages are allocated */
165 };
166
167 static void
168 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
169 {
170         ca->chain = NULL;
171         ca->used_space = LINKED_PAGE_DATA_SIZE;
172         ca->gfp_mask = gfp_mask;
173         ca->safe_needed = safe_needed;
174 }
175
176 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
177 {
178         void *ret;
179
180         if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
181                 struct linked_page *lp;
182
183                 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
184                 if (!lp)
185                         return NULL;
186
187                 lp->next = ca->chain;
188                 ca->chain = lp;
189                 ca->used_space = 0;
190         }
191         ret = ca->chain->data + ca->used_space;
192         ca->used_space += size;
193         return ret;
194 }
195
196 static void chain_free(struct chain_allocator *ca, int clear_page_nosave)
197 {
198         free_list_of_pages(ca->chain, clear_page_nosave);
199         memset(ca, 0, sizeof(struct chain_allocator));
200 }
201
202 /**
203  *      Data types related to memory bitmaps.
204  *
205  *      Memory bitmap is a structure consiting of many linked lists of
206  *      objects.  The main list's elements are of type struct zone_bitmap
207  *      and each of them corresonds to one zone.  For each zone bitmap
208  *      object there is a list of objects of type struct bm_block that
209  *      represent each blocks of bit chunks in which information is
210  *      stored.
211  *
212  *      struct memory_bitmap contains a pointer to the main list of zone
213  *      bitmap objects, a struct bm_position used for browsing the bitmap,
214  *      and a pointer to the list of pages used for allocating all of the
215  *      zone bitmap objects and bitmap block objects.
216  *
217  *      NOTE: It has to be possible to lay out the bitmap in memory
218  *      using only allocations of order 0.  Additionally, the bitmap is
219  *      designed to work with arbitrary number of zones (this is over the
220  *      top for now, but let's avoid making unnecessary assumptions ;-).
221  *
222  *      struct zone_bitmap contains a pointer to a list of bitmap block
223  *      objects and a pointer to the bitmap block object that has been
224  *      most recently used for setting bits.  Additionally, it contains the
225  *      pfns that correspond to the start and end of the represented zone.
226  *
227  *      struct bm_block contains a pointer to the memory page in which
228  *      information is stored (in the form of a block of bit chunks
229  *      of type unsigned long each).  It also contains the pfns that
230  *      correspond to the start and end of the represented memory area and
231  *      the number of bit chunks in the block.
232  */
233
234 #define BM_END_OF_MAP   (~0UL)
235
236 #define BM_CHUNKS_PER_BLOCK     (PAGE_SIZE / sizeof(long))
237 #define BM_BITS_PER_CHUNK       (sizeof(long) << 3)
238 #define BM_BITS_PER_BLOCK       (PAGE_SIZE << 3)
239
240 struct bm_block {
241         struct bm_block *next;          /* next element of the list */
242         unsigned long start_pfn;        /* pfn represented by the first bit */
243         unsigned long end_pfn;  /* pfn represented by the last bit plus 1 */
244         unsigned int size;      /* number of bit chunks */
245         unsigned long *data;    /* chunks of bits representing pages */
246 };
247
248 struct zone_bitmap {
249         struct zone_bitmap *next;       /* next element of the list */
250         unsigned long start_pfn;        /* minimal pfn in this zone */
251         unsigned long end_pfn;          /* maximal pfn in this zone plus 1 */
252         struct bm_block *bm_blocks;     /* list of bitmap blocks */
253         struct bm_block *cur_block;     /* recently used bitmap block */
254 };
255
256 /* strcut bm_position is used for browsing memory bitmaps */
257
258 struct bm_position {
259         struct zone_bitmap *zone_bm;
260         struct bm_block *block;
261         int chunk;
262         int bit;
263 };
264
265 struct memory_bitmap {
266         struct zone_bitmap *zone_bm_list;       /* list of zone bitmaps */
267         struct linked_page *p_list;     /* list of pages used to store zone
268                                          * bitmap objects and bitmap block
269                                          * objects
270                                          */
271         struct bm_position cur; /* most recently used bit position */
272 };
273
274 /* Functions that operate on memory bitmaps */
275
276 static inline void memory_bm_reset_chunk(struct memory_bitmap *bm)
277 {
278         bm->cur.chunk = 0;
279         bm->cur.bit = -1;
280 }
281
282 static void memory_bm_position_reset(struct memory_bitmap *bm)
283 {
284         struct zone_bitmap *zone_bm;
285
286         zone_bm = bm->zone_bm_list;
287         bm->cur.zone_bm = zone_bm;
288         bm->cur.block = zone_bm->bm_blocks;
289         memory_bm_reset_chunk(bm);
290 }
291
292 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
293
294 /**
295  *      create_bm_block_list - create a list of block bitmap objects
296  */
297
298 static inline struct bm_block *
299 create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca)
300 {
301         struct bm_block *bblist = NULL;
302
303         while (nr_blocks-- > 0) {
304                 struct bm_block *bb;
305
306                 bb = chain_alloc(ca, sizeof(struct bm_block));
307                 if (!bb)
308                         return NULL;
309
310                 bb->next = bblist;
311                 bblist = bb;
312         }
313         return bblist;
314 }
315
316 /**
317  *      create_zone_bm_list - create a list of zone bitmap objects
318  */
319
320 static inline struct zone_bitmap *
321 create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca)
322 {
323         struct zone_bitmap *zbmlist = NULL;
324
325         while (nr_zones-- > 0) {
326                 struct zone_bitmap *zbm;
327
328                 zbm = chain_alloc(ca, sizeof(struct zone_bitmap));
329                 if (!zbm)
330                         return NULL;
331
332                 zbm->next = zbmlist;
333                 zbmlist = zbm;
334         }
335         return zbmlist;
336 }
337
338 /**
339   *     memory_bm_create - allocate memory for a memory bitmap
340   */
341
342 static int
343 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
344 {
345         struct chain_allocator ca;
346         struct zone *zone;
347         struct zone_bitmap *zone_bm;
348         struct bm_block *bb;
349         unsigned int nr;
350
351         chain_init(&ca, gfp_mask, safe_needed);
352
353         /* Compute the number of zones */
354         nr = 0;
355         for_each_zone(zone)
356                 if (populated_zone(zone))
357                         nr++;
358
359         /* Allocate the list of zones bitmap objects */
360         zone_bm = create_zone_bm_list(nr, &ca);
361         bm->zone_bm_list = zone_bm;
362         if (!zone_bm) {
363                 chain_free(&ca, PG_UNSAFE_CLEAR);
364                 return -ENOMEM;
365         }
366
367         /* Initialize the zone bitmap objects */
368         for_each_zone(zone) {
369                 unsigned long pfn;
370
371                 if (!populated_zone(zone))
372                         continue;
373
374                 zone_bm->start_pfn = zone->zone_start_pfn;
375                 zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages;
376                 /* Allocate the list of bitmap block objects */
377                 nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
378                 bb = create_bm_block_list(nr, &ca);
379                 zone_bm->bm_blocks = bb;
380                 zone_bm->cur_block = bb;
381                 if (!bb)
382                         goto Free;
383
384                 nr = zone->spanned_pages;
385                 pfn = zone->zone_start_pfn;
386                 /* Initialize the bitmap block objects */
387                 while (bb) {
388                         unsigned long *ptr;
389
390                         ptr = get_image_page(gfp_mask, safe_needed);
391                         bb->data = ptr;
392                         if (!ptr)
393                                 goto Free;
394
395                         bb->start_pfn = pfn;
396                         if (nr >= BM_BITS_PER_BLOCK) {
397                                 pfn += BM_BITS_PER_BLOCK;
398                                 bb->size = BM_CHUNKS_PER_BLOCK;
399                                 nr -= BM_BITS_PER_BLOCK;
400                         } else {
401                                 /* This is executed only once in the loop */
402                                 pfn += nr;
403                                 bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK);
404                         }
405                         bb->end_pfn = pfn;
406                         bb = bb->next;
407                 }
408                 zone_bm = zone_bm->next;
409         }
410         bm->p_list = ca.chain;
411         memory_bm_position_reset(bm);
412         return 0;
413
414  Free:
415         bm->p_list = ca.chain;
416         memory_bm_free(bm, PG_UNSAFE_CLEAR);
417         return -ENOMEM;
418 }
419
420 /**
421   *     memory_bm_free - free memory occupied by the memory bitmap @bm
422   */
423
424 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
425 {
426         struct zone_bitmap *zone_bm;
427
428         /* Free the list of bit blocks for each zone_bitmap object */
429         zone_bm = bm->zone_bm_list;
430         while (zone_bm) {
431                 struct bm_block *bb;
432
433                 bb = zone_bm->bm_blocks;
434                 while (bb) {
435                         if (bb->data)
436                                 free_image_page(bb->data, clear_nosave_free);
437                         bb = bb->next;
438                 }
439                 zone_bm = zone_bm->next;
440         }
441         free_list_of_pages(bm->p_list, clear_nosave_free);
442         bm->zone_bm_list = NULL;
443 }
444
445 /**
446  *      memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
447  *      to given pfn.  The cur_zone_bm member of @bm and the cur_block member
448  *      of @bm->cur_zone_bm are updated.
449  */
450
451 static void memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
452                                 void **addr, unsigned int *bit_nr)
453 {
454         struct zone_bitmap *zone_bm;
455         struct bm_block *bb;
456
457         /* Check if the pfn is from the current zone */
458         zone_bm = bm->cur.zone_bm;
459         if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
460                 zone_bm = bm->zone_bm_list;
461                 /* We don't assume that the zones are sorted by pfns */
462                 while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
463                         zone_bm = zone_bm->next;
464
465                         BUG_ON(!zone_bm);
466                 }
467                 bm->cur.zone_bm = zone_bm;
468         }
469         /* Check if the pfn corresponds to the current bitmap block */
470         bb = zone_bm->cur_block;
471         if (pfn < bb->start_pfn)
472                 bb = zone_bm->bm_blocks;
473
474         while (pfn >= bb->end_pfn) {
475                 bb = bb->next;
476
477                 BUG_ON(!bb);
478         }
479         zone_bm->cur_block = bb;
480         pfn -= bb->start_pfn;
481         *bit_nr = pfn % BM_BITS_PER_CHUNK;
482         *addr = bb->data + pfn / BM_BITS_PER_CHUNK;
483 }
484
485 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
486 {
487         void *addr;
488         unsigned int bit;
489
490         memory_bm_find_bit(bm, pfn, &addr, &bit);
491         set_bit(bit, addr);
492 }
493
494 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
495 {
496         void *addr;
497         unsigned int bit;
498
499         memory_bm_find_bit(bm, pfn, &addr, &bit);
500         clear_bit(bit, addr);
501 }
502
503 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
504 {
505         void *addr;
506         unsigned int bit;
507
508         memory_bm_find_bit(bm, pfn, &addr, &bit);
509         return test_bit(bit, addr);
510 }
511
512 /* Two auxiliary functions for memory_bm_next_pfn */
513
514 /* Find the first set bit in the given chunk, if there is one */
515
516 static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p)
517 {
518         bit++;
519         while (bit < BM_BITS_PER_CHUNK) {
520                 if (test_bit(bit, chunk_p))
521                         return bit;
522
523                 bit++;
524         }
525         return -1;
526 }
527
528 /* Find a chunk containing some bits set in given block of bits */
529
530 static inline int next_chunk_in_block(int n, struct bm_block *bb)
531 {
532         n++;
533         while (n < bb->size) {
534                 if (bb->data[n])
535                         return n;
536
537                 n++;
538         }
539         return -1;
540 }
541
542 /**
543  *      memory_bm_next_pfn - find the pfn that corresponds to the next set bit
544  *      in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
545  *      returned.
546  *
547  *      It is required to run memory_bm_position_reset() before the first call to
548  *      this function.
549  */
550
551 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
552 {
553         struct zone_bitmap *zone_bm;
554         struct bm_block *bb;
555         int chunk;
556         int bit;
557
558         do {
559                 bb = bm->cur.block;
560                 do {
561                         chunk = bm->cur.chunk;
562                         bit = bm->cur.bit;
563                         do {
564                                 bit = next_bit_in_chunk(bit, bb->data + chunk);
565                                 if (bit >= 0)
566                                         goto Return_pfn;
567
568                                 chunk = next_chunk_in_block(chunk, bb);
569                                 bit = -1;
570                         } while (chunk >= 0);
571                         bb = bb->next;
572                         bm->cur.block = bb;
573                         memory_bm_reset_chunk(bm);
574                 } while (bb);
575                 zone_bm = bm->cur.zone_bm->next;
576                 if (zone_bm) {
577                         bm->cur.zone_bm = zone_bm;
578                         bm->cur.block = zone_bm->bm_blocks;
579                         memory_bm_reset_chunk(bm);
580                 }
581         } while (zone_bm);
582         memory_bm_position_reset(bm);
583         return BM_END_OF_MAP;
584
585  Return_pfn:
586         bm->cur.chunk = chunk;
587         bm->cur.bit = bit;
588         return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit;
589 }
590
591 /**
592  *      This structure represents a range of page frames the contents of which
593  *      should not be saved during the suspend.
594  */
595
596 struct nosave_region {
597         struct list_head list;
598         unsigned long start_pfn;
599         unsigned long end_pfn;
600 };
601
602 static LIST_HEAD(nosave_regions);
603
604 /**
605  *      register_nosave_region - register a range of page frames the contents
606  *      of which should not be saved during the suspend (to be used in the early
607  *      initialization code)
608  */
609
610 void __init
611 register_nosave_region(unsigned long start_pfn, unsigned long end_pfn)
612 {
613         struct nosave_region *region;
614
615         if (start_pfn >= end_pfn)
616                 return;
617
618         if (!list_empty(&nosave_regions)) {
619                 /* Try to extend the previous region (they should be sorted) */
620                 region = list_entry(nosave_regions.prev,
621                                         struct nosave_region, list);
622                 if (region->end_pfn == start_pfn) {
623                         region->end_pfn = end_pfn;
624                         goto Report;
625                 }
626         }
627         /* This allocation cannot fail */
628         region = alloc_bootmem_low(sizeof(struct nosave_region));
629         region->start_pfn = start_pfn;
630         region->end_pfn = end_pfn;
631         list_add_tail(&region->list, &nosave_regions);
632  Report:
633         printk("swsusp: Registered nosave memory region: %016lx - %016lx\n",
634                 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
635 }
636
637 /*
638  * Set bits in this map correspond to the page frames the contents of which
639  * should not be saved during the suspend.
640  */
641 static struct memory_bitmap *forbidden_pages_map;
642
643 /* Set bits in this map correspond to free page frames. */
644 static struct memory_bitmap *free_pages_map;
645
646 /*
647  * Each page frame allocated for creating the image is marked by setting the
648  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
649  */
650
651 void swsusp_set_page_free(struct page *page)
652 {
653         if (free_pages_map)
654                 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
655 }
656
657 static int swsusp_page_is_free(struct page *page)
658 {
659         return free_pages_map ?
660                 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
661 }
662
663 void swsusp_unset_page_free(struct page *page)
664 {
665         if (free_pages_map)
666                 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
667 }
668
669 static void swsusp_set_page_forbidden(struct page *page)
670 {
671         if (forbidden_pages_map)
672                 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
673 }
674
675 int swsusp_page_is_forbidden(struct page *page)
676 {
677         return forbidden_pages_map ?
678                 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
679 }
680
681 static void swsusp_unset_page_forbidden(struct page *page)
682 {
683         if (forbidden_pages_map)
684                 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
685 }
686
687 /**
688  *      mark_nosave_pages - set bits corresponding to the page frames the
689  *      contents of which should not be saved in a given bitmap.
690  */
691
692 static void mark_nosave_pages(struct memory_bitmap *bm)
693 {
694         struct nosave_region *region;
695
696         if (list_empty(&nosave_regions))
697                 return;
698
699         list_for_each_entry(region, &nosave_regions, list) {
700                 unsigned long pfn;
701
702                 printk("swsusp: Marking nosave pages: %016lx - %016lx\n",
703                                 region->start_pfn << PAGE_SHIFT,
704                                 region->end_pfn << PAGE_SHIFT);
705
706                 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
707                         memory_bm_set_bit(bm, pfn);
708         }
709 }
710
711 /**
712  *      create_basic_memory_bitmaps - create bitmaps needed for marking page
713  *      frames that should not be saved and free page frames.  The pointers
714  *      forbidden_pages_map and free_pages_map are only modified if everything
715  *      goes well, because we don't want the bits to be used before both bitmaps
716  *      are set up.
717  */
718
719 int create_basic_memory_bitmaps(void)
720 {
721         struct memory_bitmap *bm1, *bm2;
722         int error = 0;
723
724         BUG_ON(forbidden_pages_map || free_pages_map);
725
726         bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
727         if (!bm1)
728                 return -ENOMEM;
729
730         error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
731         if (error)
732                 goto Free_first_object;
733
734         bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
735         if (!bm2)
736                 goto Free_first_bitmap;
737
738         error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
739         if (error)
740                 goto Free_second_object;
741
742         forbidden_pages_map = bm1;
743         free_pages_map = bm2;
744         mark_nosave_pages(forbidden_pages_map);
745
746         printk("swsusp: Basic memory bitmaps created\n");
747
748         return 0;
749
750  Free_second_object:
751         kfree(bm2);
752  Free_first_bitmap:
753         memory_bm_free(bm1, PG_UNSAFE_CLEAR);
754  Free_first_object:
755         kfree(bm1);
756         return -ENOMEM;
757 }
758
759 /**
760  *      free_basic_memory_bitmaps - free memory bitmaps allocated by
761  *      create_basic_memory_bitmaps().  The auxiliary pointers are necessary
762  *      so that the bitmaps themselves are not referred to while they are being
763  *      freed.
764  */
765
766 void free_basic_memory_bitmaps(void)
767 {
768         struct memory_bitmap *bm1, *bm2;
769
770         BUG_ON(!(forbidden_pages_map && free_pages_map));
771
772         bm1 = forbidden_pages_map;
773         bm2 = free_pages_map;
774         forbidden_pages_map = NULL;
775         free_pages_map = NULL;
776         memory_bm_free(bm1, PG_UNSAFE_CLEAR);
777         kfree(bm1);
778         memory_bm_free(bm2, PG_UNSAFE_CLEAR);
779         kfree(bm2);
780
781         printk("swsusp: Basic memory bitmaps freed\n");
782 }
783
784 /**
785  *      snapshot_additional_pages - estimate the number of additional pages
786  *      be needed for setting up the suspend image data structures for given
787  *      zone (usually the returned value is greater than the exact number)
788  */
789
790 unsigned int snapshot_additional_pages(struct zone *zone)
791 {
792         unsigned int res;
793
794         res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
795         res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
796         return 2 * res;
797 }
798
799 #ifdef CONFIG_HIGHMEM
800 /**
801  *      count_free_highmem_pages - compute the total number of free highmem
802  *      pages, system-wide.
803  */
804
805 static unsigned int count_free_highmem_pages(void)
806 {
807         struct zone *zone;
808         unsigned int cnt = 0;
809
810         for_each_zone(zone)
811                 if (populated_zone(zone) && is_highmem(zone))
812                         cnt += zone_page_state(zone, NR_FREE_PAGES);
813
814         return cnt;
815 }
816
817 /**
818  *      saveable_highmem_page - Determine whether a highmem page should be
819  *      included in the suspend image.
820  *
821  *      We should save the page if it isn't Nosave or NosaveFree, or Reserved,
822  *      and it isn't a part of a free chunk of pages.
823  */
824
825 static struct page *saveable_highmem_page(unsigned long pfn)
826 {
827         struct page *page;
828
829         if (!pfn_valid(pfn))
830                 return NULL;
831
832         page = pfn_to_page(pfn);
833
834         BUG_ON(!PageHighMem(page));
835
836         if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
837             PageReserved(page))
838                 return NULL;
839
840         return page;
841 }
842
843 /**
844  *      count_highmem_pages - compute the total number of saveable highmem
845  *      pages.
846  */
847
848 unsigned int count_highmem_pages(void)
849 {
850         struct zone *zone;
851         unsigned int n = 0;
852
853         for_each_zone(zone) {
854                 unsigned long pfn, max_zone_pfn;
855
856                 if (!is_highmem(zone))
857                         continue;
858
859                 mark_free_pages(zone);
860                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
861                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
862                         if (saveable_highmem_page(pfn))
863                                 n++;
864         }
865         return n;
866 }
867 #else
868 static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; }
869 static inline unsigned int count_highmem_pages(void) { return 0; }
870 #endif /* CONFIG_HIGHMEM */
871
872 /**
873  *      saveable - Determine whether a non-highmem page should be included in
874  *      the suspend image.
875  *
876  *      We should save the page if it isn't Nosave, and is not in the range
877  *      of pages statically defined as 'unsaveable', and it isn't a part of
878  *      a free chunk of pages.
879  */
880
881 static struct page *saveable_page(unsigned long pfn)
882 {
883         struct page *page;
884
885         if (!pfn_valid(pfn))
886                 return NULL;
887
888         page = pfn_to_page(pfn);
889
890         BUG_ON(PageHighMem(page));
891
892         if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
893                 return NULL;
894
895         if (PageReserved(page) && pfn_is_nosave(pfn))
896                 return NULL;
897
898         return page;
899 }
900
901 /**
902  *      count_data_pages - compute the total number of saveable non-highmem
903  *      pages.
904  */
905
906 unsigned int count_data_pages(void)
907 {
908         struct zone *zone;
909         unsigned long pfn, max_zone_pfn;
910         unsigned int n = 0;
911
912         for_each_zone(zone) {
913                 if (is_highmem(zone))
914                         continue;
915
916                 mark_free_pages(zone);
917                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
918                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
919                         if(saveable_page(pfn))
920                                 n++;
921         }
922         return n;
923 }
924
925 /* This is needed, because copy_page and memcpy are not usable for copying
926  * task structs.
927  */
928 static inline void do_copy_page(long *dst, long *src)
929 {
930         int n;
931
932         for (n = PAGE_SIZE / sizeof(long); n; n--)
933                 *dst++ = *src++;
934 }
935
936 #ifdef CONFIG_HIGHMEM
937 static inline struct page *
938 page_is_saveable(struct zone *zone, unsigned long pfn)
939 {
940         return is_highmem(zone) ?
941                         saveable_highmem_page(pfn) : saveable_page(pfn);
942 }
943
944 static inline void
945 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
946 {
947         struct page *s_page, *d_page;
948         void *src, *dst;
949
950         s_page = pfn_to_page(src_pfn);
951         d_page = pfn_to_page(dst_pfn);
952         if (PageHighMem(s_page)) {
953                 src = kmap_atomic(s_page, KM_USER0);
954                 dst = kmap_atomic(d_page, KM_USER1);
955                 do_copy_page(dst, src);
956                 kunmap_atomic(src, KM_USER0);
957                 kunmap_atomic(dst, KM_USER1);
958         } else {
959                 src = page_address(s_page);
960                 if (PageHighMem(d_page)) {
961                         /* Page pointed to by src may contain some kernel
962                          * data modified by kmap_atomic()
963                          */
964                         do_copy_page(buffer, src);
965                         dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0);
966                         memcpy(dst, buffer, PAGE_SIZE);
967                         kunmap_atomic(dst, KM_USER0);
968                 } else {
969                         dst = page_address(d_page);
970                         do_copy_page(dst, src);
971                 }
972         }
973 }
974 #else
975 #define page_is_saveable(zone, pfn)     saveable_page(pfn)
976
977 static inline void
978 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
979 {
980         do_copy_page(page_address(pfn_to_page(dst_pfn)),
981                         page_address(pfn_to_page(src_pfn)));
982 }
983 #endif /* CONFIG_HIGHMEM */
984
985 static void
986 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
987 {
988         struct zone *zone;
989         unsigned long pfn;
990
991         for_each_zone(zone) {
992                 unsigned long max_zone_pfn;
993
994                 mark_free_pages(zone);
995                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
996                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
997                         if (page_is_saveable(zone, pfn))
998                                 memory_bm_set_bit(orig_bm, pfn);
999         }
1000         memory_bm_position_reset(orig_bm);
1001         memory_bm_position_reset(copy_bm);
1002         do {
1003                 pfn = memory_bm_next_pfn(orig_bm);
1004                 if (likely(pfn != BM_END_OF_MAP))
1005                         copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1006         } while (pfn != BM_END_OF_MAP);
1007 }
1008
1009 /* Total number of image pages */
1010 static unsigned int nr_copy_pages;
1011 /* Number of pages needed for saving the original pfns of the image pages */
1012 static unsigned int nr_meta_pages;
1013
1014 /**
1015  *      swsusp_free - free pages allocated for the suspend.
1016  *
1017  *      Suspend pages are alocated before the atomic copy is made, so we
1018  *      need to release them after the resume.
1019  */
1020
1021 void swsusp_free(void)
1022 {
1023         struct zone *zone;
1024         unsigned long pfn, max_zone_pfn;
1025
1026         for_each_zone(zone) {
1027                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1028                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1029                         if (pfn_valid(pfn)) {
1030                                 struct page *page = pfn_to_page(pfn);
1031
1032                                 if (swsusp_page_is_forbidden(page) &&
1033                                     swsusp_page_is_free(page)) {
1034                                         swsusp_unset_page_forbidden(page);
1035                                         swsusp_unset_page_free(page);
1036                                         __free_page(page);
1037                                 }
1038                         }
1039         }
1040         nr_copy_pages = 0;
1041         nr_meta_pages = 0;
1042         restore_pblist = NULL;
1043         buffer = NULL;
1044 }
1045
1046 #ifdef CONFIG_HIGHMEM
1047 /**
1048   *     count_pages_for_highmem - compute the number of non-highmem pages
1049   *     that will be necessary for creating copies of highmem pages.
1050   */
1051
1052 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1053 {
1054         unsigned int free_highmem = count_free_highmem_pages();
1055
1056         if (free_highmem >= nr_highmem)
1057                 nr_highmem = 0;
1058         else
1059                 nr_highmem -= free_highmem;
1060
1061         return nr_highmem;
1062 }
1063 #else
1064 static unsigned int
1065 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1066 #endif /* CONFIG_HIGHMEM */
1067
1068 /**
1069  *      enough_free_mem - Make sure we have enough free memory for the
1070  *      snapshot image.
1071  */
1072
1073 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1074 {
1075         struct zone *zone;
1076         unsigned int free = 0, meta = 0;
1077
1078         for_each_zone(zone) {
1079                 meta += snapshot_additional_pages(zone);
1080                 if (!is_highmem(zone))
1081                         free += zone_page_state(zone, NR_FREE_PAGES);
1082         }
1083
1084         nr_pages += count_pages_for_highmem(nr_highmem);
1085         pr_debug("swsusp: Normal pages needed: %u + %u + %u, available pages: %u\n",
1086                 nr_pages, PAGES_FOR_IO, meta, free);
1087
1088         return free > nr_pages + PAGES_FOR_IO + meta;
1089 }
1090
1091 #ifdef CONFIG_HIGHMEM
1092 /**
1093  *      get_highmem_buffer - if there are some highmem pages in the suspend
1094  *      image, we may need the buffer to copy them and/or load their data.
1095  */
1096
1097 static inline int get_highmem_buffer(int safe_needed)
1098 {
1099         buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1100         return buffer ? 0 : -ENOMEM;
1101 }
1102
1103 /**
1104  *      alloc_highmem_image_pages - allocate some highmem pages for the image.
1105  *      Try to allocate as many pages as needed, but if the number of free
1106  *      highmem pages is lesser than that, allocate them all.
1107  */
1108
1109 static inline unsigned int
1110 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1111 {
1112         unsigned int to_alloc = count_free_highmem_pages();
1113
1114         if (to_alloc > nr_highmem)
1115                 to_alloc = nr_highmem;
1116
1117         nr_highmem -= to_alloc;
1118         while (to_alloc-- > 0) {
1119                 struct page *page;
1120
1121                 page = alloc_image_page(__GFP_HIGHMEM);
1122                 memory_bm_set_bit(bm, page_to_pfn(page));
1123         }
1124         return nr_highmem;
1125 }
1126 #else
1127 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1128
1129 static inline unsigned int
1130 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1131 #endif /* CONFIG_HIGHMEM */
1132
1133 /**
1134  *      swsusp_alloc - allocate memory for the suspend image
1135  *
1136  *      We first try to allocate as many highmem pages as there are
1137  *      saveable highmem pages in the system.  If that fails, we allocate
1138  *      non-highmem pages for the copies of the remaining highmem ones.
1139  *
1140  *      In this approach it is likely that the copies of highmem pages will
1141  *      also be located in the high memory, because of the way in which
1142  *      copy_data_pages() works.
1143  */
1144
1145 static int
1146 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1147                 unsigned int nr_pages, unsigned int nr_highmem)
1148 {
1149         int error;
1150
1151         error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1152         if (error)
1153                 goto Free;
1154
1155         error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1156         if (error)
1157                 goto Free;
1158
1159         if (nr_highmem > 0) {
1160                 error = get_highmem_buffer(PG_ANY);
1161                 if (error)
1162                         goto Free;
1163
1164                 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
1165         }
1166         while (nr_pages-- > 0) {
1167                 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1168
1169                 if (!page)
1170                         goto Free;
1171
1172                 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1173         }
1174         return 0;
1175
1176  Free:
1177         swsusp_free();
1178         return -ENOMEM;
1179 }
1180
1181 /* Memory bitmap used for marking saveable pages (during suspend) or the
1182  * suspend image pages (during resume)
1183  */
1184 static struct memory_bitmap orig_bm;
1185 /* Memory bitmap used on suspend for marking allocated pages that will contain
1186  * the copies of saveable pages.  During resume it is initially used for
1187  * marking the suspend image pages, but then its set bits are duplicated in
1188  * @orig_bm and it is released.  Next, on systems with high memory, it may be
1189  * used for marking "safe" highmem pages, but it has to be reinitialized for
1190  * this purpose.
1191  */
1192 static struct memory_bitmap copy_bm;
1193
1194 asmlinkage int swsusp_save(void)
1195 {
1196         unsigned int nr_pages, nr_highmem;
1197
1198         printk("swsusp: critical section: \n");
1199
1200         drain_local_pages();
1201         nr_pages = count_data_pages();
1202         nr_highmem = count_highmem_pages();
1203         printk("swsusp: Need to copy %u pages\n", nr_pages + nr_highmem);
1204
1205         if (!enough_free_mem(nr_pages, nr_highmem)) {
1206                 printk(KERN_ERR "swsusp: Not enough free memory\n");
1207                 return -ENOMEM;
1208         }
1209
1210         if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1211                 printk(KERN_ERR "swsusp: Memory allocation failed\n");
1212                 return -ENOMEM;
1213         }
1214
1215         /* During allocating of suspend pagedir, new cold pages may appear.
1216          * Kill them.
1217          */
1218         drain_local_pages();
1219         copy_data_pages(&copy_bm, &orig_bm);
1220
1221         /*
1222          * End of critical section. From now on, we can write to memory,
1223          * but we should not touch disk. This specially means we must _not_
1224          * touch swap space! Except we must write out our image of course.
1225          */
1226
1227         nr_pages += nr_highmem;
1228         nr_copy_pages = nr_pages;
1229         nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1230
1231         printk("swsusp: critical section/: done (%d pages copied)\n", nr_pages);
1232
1233         return 0;
1234 }
1235
1236 static void init_header(struct swsusp_info *info)
1237 {
1238         memset(info, 0, sizeof(struct swsusp_info));
1239         info->version_code = LINUX_VERSION_CODE;
1240         info->num_physpages = num_physpages;
1241         memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1242         info->cpus = num_online_cpus();
1243         info->image_pages = nr_copy_pages;
1244         info->pages = nr_copy_pages + nr_meta_pages + 1;
1245         info->size = info->pages;
1246         info->size <<= PAGE_SHIFT;
1247 }
1248
1249 /**
1250  *      pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1251  *      are stored in the array @buf[] (1 page at a time)
1252  */
1253
1254 static inline void
1255 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1256 {
1257         int j;
1258
1259         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1260                 buf[j] = memory_bm_next_pfn(bm);
1261                 if (unlikely(buf[j] == BM_END_OF_MAP))
1262                         break;
1263         }
1264 }
1265
1266 /**
1267  *      snapshot_read_next - used for reading the system memory snapshot.
1268  *
1269  *      On the first call to it @handle should point to a zeroed
1270  *      snapshot_handle structure.  The structure gets updated and a pointer
1271  *      to it should be passed to this function every next time.
1272  *
1273  *      The @count parameter should contain the number of bytes the caller
1274  *      wants to read from the snapshot.  It must not be zero.
1275  *
1276  *      On success the function returns a positive number.  Then, the caller
1277  *      is allowed to read up to the returned number of bytes from the memory
1278  *      location computed by the data_of() macro.  The number returned
1279  *      may be smaller than @count, but this only happens if the read would
1280  *      cross a page boundary otherwise.
1281  *
1282  *      The function returns 0 to indicate the end of data stream condition,
1283  *      and a negative number is returned on error.  In such cases the
1284  *      structure pointed to by @handle is not updated and should not be used
1285  *      any more.
1286  */
1287
1288 int snapshot_read_next(struct snapshot_handle *handle, size_t count)
1289 {
1290         if (handle->cur > nr_meta_pages + nr_copy_pages)
1291                 return 0;
1292
1293         if (!buffer) {
1294                 /* This makes the buffer be freed by swsusp_free() */
1295                 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1296                 if (!buffer)
1297                         return -ENOMEM;
1298         }
1299         if (!handle->offset) {
1300                 init_header((struct swsusp_info *)buffer);
1301                 handle->buffer = buffer;
1302                 memory_bm_position_reset(&orig_bm);
1303                 memory_bm_position_reset(&copy_bm);
1304         }
1305         if (handle->prev < handle->cur) {
1306                 if (handle->cur <= nr_meta_pages) {
1307                         memset(buffer, 0, PAGE_SIZE);
1308                         pack_pfns(buffer, &orig_bm);
1309                 } else {
1310                         struct page *page;
1311
1312                         page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1313                         if (PageHighMem(page)) {
1314                                 /* Highmem pages are copied to the buffer,
1315                                  * because we can't return with a kmapped
1316                                  * highmem page (we may not be called again).
1317                                  */
1318                                 void *kaddr;
1319
1320                                 kaddr = kmap_atomic(page, KM_USER0);
1321                                 memcpy(buffer, kaddr, PAGE_SIZE);
1322                                 kunmap_atomic(kaddr, KM_USER0);
1323                                 handle->buffer = buffer;
1324                         } else {
1325                                 handle->buffer = page_address(page);
1326                         }
1327                 }
1328                 handle->prev = handle->cur;
1329         }
1330         handle->buf_offset = handle->cur_offset;
1331         if (handle->cur_offset + count >= PAGE_SIZE) {
1332                 count = PAGE_SIZE - handle->cur_offset;
1333                 handle->cur_offset = 0;
1334                 handle->cur++;
1335         } else {
1336                 handle->cur_offset += count;
1337         }
1338         handle->offset += count;
1339         return count;
1340 }
1341
1342 /**
1343  *      mark_unsafe_pages - mark the pages that cannot be used for storing
1344  *      the image during resume, because they conflict with the pages that
1345  *      had been used before suspend
1346  */
1347
1348 static int mark_unsafe_pages(struct memory_bitmap *bm)
1349 {
1350         struct zone *zone;
1351         unsigned long pfn, max_zone_pfn;
1352
1353         /* Clear page flags */
1354         for_each_zone(zone) {
1355                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1356                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1357                         if (pfn_valid(pfn))
1358                                 swsusp_unset_page_free(pfn_to_page(pfn));
1359         }
1360
1361         /* Mark pages that correspond to the "original" pfns as "unsafe" */
1362         memory_bm_position_reset(bm);
1363         do {
1364                 pfn = memory_bm_next_pfn(bm);
1365                 if (likely(pfn != BM_END_OF_MAP)) {
1366                         if (likely(pfn_valid(pfn)))
1367                                 swsusp_set_page_free(pfn_to_page(pfn));
1368                         else
1369                                 return -EFAULT;
1370                 }
1371         } while (pfn != BM_END_OF_MAP);
1372
1373         allocated_unsafe_pages = 0;
1374
1375         return 0;
1376 }
1377
1378 static void
1379 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1380 {
1381         unsigned long pfn;
1382
1383         memory_bm_position_reset(src);
1384         pfn = memory_bm_next_pfn(src);
1385         while (pfn != BM_END_OF_MAP) {
1386                 memory_bm_set_bit(dst, pfn);
1387                 pfn = memory_bm_next_pfn(src);
1388         }
1389 }
1390
1391 static inline int check_header(struct swsusp_info *info)
1392 {
1393         char *reason = NULL;
1394
1395         if (info->version_code != LINUX_VERSION_CODE)
1396                 reason = "kernel version";
1397         if (info->num_physpages != num_physpages)
1398                 reason = "memory size";
1399         if (strcmp(info->uts.sysname,init_utsname()->sysname))
1400                 reason = "system type";
1401         if (strcmp(info->uts.release,init_utsname()->release))
1402                 reason = "kernel release";
1403         if (strcmp(info->uts.version,init_utsname()->version))
1404                 reason = "version";
1405         if (strcmp(info->uts.machine,init_utsname()->machine))
1406                 reason = "machine";
1407         if (reason) {
1408                 printk(KERN_ERR "swsusp: Resume mismatch: %s\n", reason);
1409                 return -EPERM;
1410         }
1411         return 0;
1412 }
1413
1414 /**
1415  *      load header - check the image header and copy data from it
1416  */
1417
1418 static int
1419 load_header(struct swsusp_info *info)
1420 {
1421         int error;
1422
1423         restore_pblist = NULL;
1424         error = check_header(info);
1425         if (!error) {
1426                 nr_copy_pages = info->image_pages;
1427                 nr_meta_pages = info->pages - info->image_pages - 1;
1428         }
1429         return error;
1430 }
1431
1432 /**
1433  *      unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1434  *      the corresponding bit in the memory bitmap @bm
1435  */
1436
1437 static inline void
1438 unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1439 {
1440         int j;
1441
1442         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1443                 if (unlikely(buf[j] == BM_END_OF_MAP))
1444                         break;
1445
1446                 memory_bm_set_bit(bm, buf[j]);
1447         }
1448 }
1449
1450 /* List of "safe" pages that may be used to store data loaded from the suspend
1451  * image
1452  */
1453 static struct linked_page *safe_pages_list;
1454
1455 #ifdef CONFIG_HIGHMEM
1456 /* struct highmem_pbe is used for creating the list of highmem pages that
1457  * should be restored atomically during the resume from disk, because the page
1458  * frames they have occupied before the suspend are in use.
1459  */
1460 struct highmem_pbe {
1461         struct page *copy_page; /* data is here now */
1462         struct page *orig_page; /* data was here before the suspend */
1463         struct highmem_pbe *next;
1464 };
1465
1466 /* List of highmem PBEs needed for restoring the highmem pages that were
1467  * allocated before the suspend and included in the suspend image, but have
1468  * also been allocated by the "resume" kernel, so their contents cannot be
1469  * written directly to their "original" page frames.
1470  */
1471 static struct highmem_pbe *highmem_pblist;
1472
1473 /**
1474  *      count_highmem_image_pages - compute the number of highmem pages in the
1475  *      suspend image.  The bits in the memory bitmap @bm that correspond to the
1476  *      image pages are assumed to be set.
1477  */
1478
1479 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1480 {
1481         unsigned long pfn;
1482         unsigned int cnt = 0;
1483
1484         memory_bm_position_reset(bm);
1485         pfn = memory_bm_next_pfn(bm);
1486         while (pfn != BM_END_OF_MAP) {
1487                 if (PageHighMem(pfn_to_page(pfn)))
1488                         cnt++;
1489
1490                 pfn = memory_bm_next_pfn(bm);
1491         }
1492         return cnt;
1493 }
1494
1495 /**
1496  *      prepare_highmem_image - try to allocate as many highmem pages as
1497  *      there are highmem image pages (@nr_highmem_p points to the variable
1498  *      containing the number of highmem image pages).  The pages that are
1499  *      "safe" (ie. will not be overwritten when the suspend image is
1500  *      restored) have the corresponding bits set in @bm (it must be
1501  *      unitialized).
1502  *
1503  *      NOTE: This function should not be called if there are no highmem
1504  *      image pages.
1505  */
1506
1507 static unsigned int safe_highmem_pages;
1508
1509 static struct memory_bitmap *safe_highmem_bm;
1510
1511 static int
1512 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1513 {
1514         unsigned int to_alloc;
1515
1516         if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1517                 return -ENOMEM;
1518
1519         if (get_highmem_buffer(PG_SAFE))
1520                 return -ENOMEM;
1521
1522         to_alloc = count_free_highmem_pages();
1523         if (to_alloc > *nr_highmem_p)
1524                 to_alloc = *nr_highmem_p;
1525         else
1526                 *nr_highmem_p = to_alloc;
1527
1528         safe_highmem_pages = 0;
1529         while (to_alloc-- > 0) {
1530                 struct page *page;
1531
1532                 page = alloc_page(__GFP_HIGHMEM);
1533                 if (!swsusp_page_is_free(page)) {
1534                         /* The page is "safe", set its bit the bitmap */
1535                         memory_bm_set_bit(bm, page_to_pfn(page));
1536                         safe_highmem_pages++;
1537                 }
1538                 /* Mark the page as allocated */
1539                 swsusp_set_page_forbidden(page);
1540                 swsusp_set_page_free(page);
1541         }
1542         memory_bm_position_reset(bm);
1543         safe_highmem_bm = bm;
1544         return 0;
1545 }
1546
1547 /**
1548  *      get_highmem_page_buffer - for given highmem image page find the buffer
1549  *      that suspend_write_next() should set for its caller to write to.
1550  *
1551  *      If the page is to be saved to its "original" page frame or a copy of
1552  *      the page is to be made in the highmem, @buffer is returned.  Otherwise,
1553  *      the copy of the page is to be made in normal memory, so the address of
1554  *      the copy is returned.
1555  *
1556  *      If @buffer is returned, the caller of suspend_write_next() will write
1557  *      the page's contents to @buffer, so they will have to be copied to the
1558  *      right location on the next call to suspend_write_next() and it is done
1559  *      with the help of copy_last_highmem_page().  For this purpose, if
1560  *      @buffer is returned, @last_highmem page is set to the page to which
1561  *      the data will have to be copied from @buffer.
1562  */
1563
1564 static struct page *last_highmem_page;
1565
1566 static void *
1567 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1568 {
1569         struct highmem_pbe *pbe;
1570         void *kaddr;
1571
1572         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1573                 /* We have allocated the "original" page frame and we can
1574                  * use it directly to store the loaded page.
1575                  */
1576                 last_highmem_page = page;
1577                 return buffer;
1578         }
1579         /* The "original" page frame has not been allocated and we have to
1580          * use a "safe" page frame to store the loaded page.
1581          */
1582         pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1583         if (!pbe) {
1584                 swsusp_free();
1585                 return NULL;
1586         }
1587         pbe->orig_page = page;
1588         if (safe_highmem_pages > 0) {
1589                 struct page *tmp;
1590
1591                 /* Copy of the page will be stored in high memory */
1592                 kaddr = buffer;
1593                 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1594                 safe_highmem_pages--;
1595                 last_highmem_page = tmp;
1596                 pbe->copy_page = tmp;
1597         } else {
1598                 /* Copy of the page will be stored in normal memory */
1599                 kaddr = safe_pages_list;
1600                 safe_pages_list = safe_pages_list->next;
1601                 pbe->copy_page = virt_to_page(kaddr);
1602         }
1603         pbe->next = highmem_pblist;
1604         highmem_pblist = pbe;
1605         return kaddr;
1606 }
1607
1608 /**
1609  *      copy_last_highmem_page - copy the contents of a highmem image from
1610  *      @buffer, where the caller of snapshot_write_next() has place them,
1611  *      to the right location represented by @last_highmem_page .
1612  */
1613
1614 static void copy_last_highmem_page(void)
1615 {
1616         if (last_highmem_page) {
1617                 void *dst;
1618
1619                 dst = kmap_atomic(last_highmem_page, KM_USER0);
1620                 memcpy(dst, buffer, PAGE_SIZE);
1621                 kunmap_atomic(dst, KM_USER0);
1622                 last_highmem_page = NULL;
1623         }
1624 }
1625
1626 static inline int last_highmem_page_copied(void)
1627 {
1628         return !last_highmem_page;
1629 }
1630
1631 static inline void free_highmem_data(void)
1632 {
1633         if (safe_highmem_bm)
1634                 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1635
1636         if (buffer)
1637                 free_image_page(buffer, PG_UNSAFE_CLEAR);
1638 }
1639 #else
1640 static inline int get_safe_write_buffer(void) { return 0; }
1641
1642 static unsigned int
1643 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
1644
1645 static inline int
1646 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1647 {
1648         return 0;
1649 }
1650
1651 static inline void *
1652 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1653 {
1654         return NULL;
1655 }
1656
1657 static inline void copy_last_highmem_page(void) {}
1658 static inline int last_highmem_page_copied(void) { return 1; }
1659 static inline void free_highmem_data(void) {}
1660 #endif /* CONFIG_HIGHMEM */
1661
1662 /**
1663  *      prepare_image - use the memory bitmap @bm to mark the pages that will
1664  *      be overwritten in the process of restoring the system memory state
1665  *      from the suspend image ("unsafe" pages) and allocate memory for the
1666  *      image.
1667  *
1668  *      The idea is to allocate a new memory bitmap first and then allocate
1669  *      as many pages as needed for the image data, but not to assign these
1670  *      pages to specific tasks initially.  Instead, we just mark them as
1671  *      allocated and create a lists of "safe" pages that will be used
1672  *      later.  On systems with high memory a list of "safe" highmem pages is
1673  *      also created.
1674  */
1675
1676 #define PBES_PER_LINKED_PAGE    (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
1677
1678 static int
1679 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1680 {
1681         unsigned int nr_pages, nr_highmem;
1682         struct linked_page *sp_list, *lp;
1683         int error;
1684
1685         /* If there is no highmem, the buffer will not be necessary */
1686         free_image_page(buffer, PG_UNSAFE_CLEAR);
1687         buffer = NULL;
1688
1689         nr_highmem = count_highmem_image_pages(bm);
1690         error = mark_unsafe_pages(bm);
1691         if (error)
1692                 goto Free;
1693
1694         error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
1695         if (error)
1696                 goto Free;
1697
1698         duplicate_memory_bitmap(new_bm, bm);
1699         memory_bm_free(bm, PG_UNSAFE_KEEP);
1700         if (nr_highmem > 0) {
1701                 error = prepare_highmem_image(bm, &nr_highmem);
1702                 if (error)
1703                         goto Free;
1704         }
1705         /* Reserve some safe pages for potential later use.
1706          *
1707          * NOTE: This way we make sure there will be enough safe pages for the
1708          * chain_alloc() in get_buffer().  It is a bit wasteful, but
1709          * nr_copy_pages cannot be greater than 50% of the memory anyway.
1710          */
1711         sp_list = NULL;
1712         /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
1713         nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1714         nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
1715         while (nr_pages > 0) {
1716                 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
1717                 if (!lp) {
1718                         error = -ENOMEM;
1719                         goto Free;
1720                 }
1721                 lp->next = sp_list;
1722                 sp_list = lp;
1723                 nr_pages--;
1724         }
1725         /* Preallocate memory for the image */
1726         safe_pages_list = NULL;
1727         nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1728         while (nr_pages > 0) {
1729                 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
1730                 if (!lp) {
1731                         error = -ENOMEM;
1732                         goto Free;
1733                 }
1734                 if (!swsusp_page_is_free(virt_to_page(lp))) {
1735                         /* The page is "safe", add it to the list */
1736                         lp->next = safe_pages_list;
1737                         safe_pages_list = lp;
1738                 }
1739                 /* Mark the page as allocated */
1740                 swsusp_set_page_forbidden(virt_to_page(lp));
1741                 swsusp_set_page_free(virt_to_page(lp));
1742                 nr_pages--;
1743         }
1744         /* Free the reserved safe pages so that chain_alloc() can use them */
1745         while (sp_list) {
1746                 lp = sp_list->next;
1747                 free_image_page(sp_list, PG_UNSAFE_CLEAR);
1748                 sp_list = lp;
1749         }
1750         return 0;
1751
1752  Free:
1753         swsusp_free();
1754         return error;
1755 }
1756
1757 /**
1758  *      get_buffer - compute the address that snapshot_write_next() should
1759  *      set for its caller to write to.
1760  */
1761
1762 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
1763 {
1764         struct pbe *pbe;
1765         struct page *page = pfn_to_page(memory_bm_next_pfn(bm));
1766
1767         if (PageHighMem(page))
1768                 return get_highmem_page_buffer(page, ca);
1769
1770         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
1771                 /* We have allocated the "original" page frame and we can
1772                  * use it directly to store the loaded page.
1773                  */
1774                 return page_address(page);
1775
1776         /* The "original" page frame has not been allocated and we have to
1777          * use a "safe" page frame to store the loaded page.
1778          */
1779         pbe = chain_alloc(ca, sizeof(struct pbe));
1780         if (!pbe) {
1781                 swsusp_free();
1782                 return NULL;
1783         }
1784         pbe->orig_address = page_address(page);
1785         pbe->address = safe_pages_list;
1786         safe_pages_list = safe_pages_list->next;
1787         pbe->next = restore_pblist;
1788         restore_pblist = pbe;
1789         return pbe->address;
1790 }
1791
1792 /**
1793  *      snapshot_write_next - used for writing the system memory snapshot.
1794  *
1795  *      On the first call to it @handle should point to a zeroed
1796  *      snapshot_handle structure.  The structure gets updated and a pointer
1797  *      to it should be passed to this function every next time.
1798  *
1799  *      The @count parameter should contain the number of bytes the caller
1800  *      wants to write to the image.  It must not be zero.
1801  *
1802  *      On success the function returns a positive number.  Then, the caller
1803  *      is allowed to write up to the returned number of bytes to the memory
1804  *      location computed by the data_of() macro.  The number returned
1805  *      may be smaller than @count, but this only happens if the write would
1806  *      cross a page boundary otherwise.
1807  *
1808  *      The function returns 0 to indicate the "end of file" condition,
1809  *      and a negative number is returned on error.  In such cases the
1810  *      structure pointed to by @handle is not updated and should not be used
1811  *      any more.
1812  */
1813
1814 int snapshot_write_next(struct snapshot_handle *handle, size_t count)
1815 {
1816         static struct chain_allocator ca;
1817         int error = 0;
1818
1819         /* Check if we have already loaded the entire image */
1820         if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
1821                 return 0;
1822
1823         if (handle->offset == 0) {
1824                 if (!buffer)
1825                         /* This makes the buffer be freed by swsusp_free() */
1826                         buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1827
1828                 if (!buffer)
1829                         return -ENOMEM;
1830
1831                 handle->buffer = buffer;
1832         }
1833         handle->sync_read = 1;
1834         if (handle->prev < handle->cur) {
1835                 if (handle->prev == 0) {
1836                         error = load_header(buffer);
1837                         if (error)
1838                                 return error;
1839
1840                         error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
1841                         if (error)
1842                                 return error;
1843
1844                 } else if (handle->prev <= nr_meta_pages) {
1845                         unpack_orig_pfns(buffer, &copy_bm);
1846                         if (handle->prev == nr_meta_pages) {
1847                                 error = prepare_image(&orig_bm, &copy_bm);
1848                                 if (error)
1849                                         return error;
1850
1851                                 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
1852                                 memory_bm_position_reset(&orig_bm);
1853                                 restore_pblist = NULL;
1854                                 handle->buffer = get_buffer(&orig_bm, &ca);
1855                                 handle->sync_read = 0;
1856                                 if (!handle->buffer)
1857                                         return -ENOMEM;
1858                         }
1859                 } else {
1860                         copy_last_highmem_page();
1861                         handle->buffer = get_buffer(&orig_bm, &ca);
1862                         if (handle->buffer != buffer)
1863                                 handle->sync_read = 0;
1864                 }
1865                 handle->prev = handle->cur;
1866         }
1867         handle->buf_offset = handle->cur_offset;
1868         if (handle->cur_offset + count >= PAGE_SIZE) {
1869                 count = PAGE_SIZE - handle->cur_offset;
1870                 handle->cur_offset = 0;
1871                 handle->cur++;
1872         } else {
1873                 handle->cur_offset += count;
1874         }
1875         handle->offset += count;
1876         return count;
1877 }
1878
1879 /**
1880  *      snapshot_write_finalize - must be called after the last call to
1881  *      snapshot_write_next() in case the last page in the image happens
1882  *      to be a highmem page and its contents should be stored in the
1883  *      highmem.  Additionally, it releases the memory that will not be
1884  *      used any more.
1885  */
1886
1887 void snapshot_write_finalize(struct snapshot_handle *handle)
1888 {
1889         copy_last_highmem_page();
1890         /* Free only if we have loaded the image entirely */
1891         if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
1892                 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
1893                 free_highmem_data();
1894         }
1895 }
1896
1897 int snapshot_image_loaded(struct snapshot_handle *handle)
1898 {
1899         return !(!nr_copy_pages || !last_highmem_page_copied() ||
1900                         handle->cur <= nr_meta_pages + nr_copy_pages);
1901 }
1902
1903 #ifdef CONFIG_HIGHMEM
1904 /* Assumes that @buf is ready and points to a "safe" page */
1905 static inline void
1906 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
1907 {
1908         void *kaddr1, *kaddr2;
1909
1910         kaddr1 = kmap_atomic(p1, KM_USER0);
1911         kaddr2 = kmap_atomic(p2, KM_USER1);
1912         memcpy(buf, kaddr1, PAGE_SIZE);
1913         memcpy(kaddr1, kaddr2, PAGE_SIZE);
1914         memcpy(kaddr2, buf, PAGE_SIZE);
1915         kunmap_atomic(kaddr1, KM_USER0);
1916         kunmap_atomic(kaddr2, KM_USER1);
1917 }
1918
1919 /**
1920  *      restore_highmem - for each highmem page that was allocated before
1921  *      the suspend and included in the suspend image, and also has been
1922  *      allocated by the "resume" kernel swap its current (ie. "before
1923  *      resume") contents with the previous (ie. "before suspend") one.
1924  *
1925  *      If the resume eventually fails, we can call this function once
1926  *      again and restore the "before resume" highmem state.
1927  */
1928
1929 int restore_highmem(void)
1930 {
1931         struct highmem_pbe *pbe = highmem_pblist;
1932         void *buf;
1933
1934         if (!pbe)
1935                 return 0;
1936
1937         buf = get_image_page(GFP_ATOMIC, PG_SAFE);
1938         if (!buf)
1939                 return -ENOMEM;
1940
1941         while (pbe) {
1942                 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
1943                 pbe = pbe->next;
1944         }
1945         free_image_page(buf, PG_UNSAFE_CLEAR);
1946         return 0;
1947 }
1948 #endif /* CONFIG_HIGHMEM */