Merge git://git.kernel.org/pub/scm/linux/kernel/git/bunk/trivial
[powerpc.git] / kernel / power / snapshot.c
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28
29 #include <asm/uaccess.h>
30 #include <asm/mmu_context.h>
31 #include <asm/pgtable.h>
32 #include <asm/tlbflush.h>
33 #include <asm/io.h>
34
35 #include "power.h"
36
37 static int swsusp_page_is_free(struct page *);
38 static void swsusp_set_page_forbidden(struct page *);
39 static void swsusp_unset_page_forbidden(struct page *);
40
41 /* List of PBEs needed for restoring the pages that were allocated before
42  * the suspend and included in the suspend image, but have also been
43  * allocated by the "resume" kernel, so their contents cannot be written
44  * directly to their "original" page frames.
45  */
46 struct pbe *restore_pblist;
47
48 /* Pointer to an auxiliary buffer (1 page) */
49 static void *buffer;
50
51 /**
52  *      @safe_needed - on resume, for storing the PBE list and the image,
53  *      we can only use memory pages that do not conflict with the pages
54  *      used before suspend.  The unsafe pages have PageNosaveFree set
55  *      and we count them using unsafe_pages.
56  *
57  *      Each allocated image page is marked as PageNosave and PageNosaveFree
58  *      so that swsusp_free() can release it.
59  */
60
61 #define PG_ANY          0
62 #define PG_SAFE         1
63 #define PG_UNSAFE_CLEAR 1
64 #define PG_UNSAFE_KEEP  0
65
66 static unsigned int allocated_unsafe_pages;
67
68 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
69 {
70         void *res;
71
72         res = (void *)get_zeroed_page(gfp_mask);
73         if (safe_needed)
74                 while (res && swsusp_page_is_free(virt_to_page(res))) {
75                         /* The page is unsafe, mark it for swsusp_free() */
76                         swsusp_set_page_forbidden(virt_to_page(res));
77                         allocated_unsafe_pages++;
78                         res = (void *)get_zeroed_page(gfp_mask);
79                 }
80         if (res) {
81                 swsusp_set_page_forbidden(virt_to_page(res));
82                 swsusp_set_page_free(virt_to_page(res));
83         }
84         return res;
85 }
86
87 unsigned long get_safe_page(gfp_t gfp_mask)
88 {
89         return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
90 }
91
92 static struct page *alloc_image_page(gfp_t gfp_mask)
93 {
94         struct page *page;
95
96         page = alloc_page(gfp_mask);
97         if (page) {
98                 swsusp_set_page_forbidden(page);
99                 swsusp_set_page_free(page);
100         }
101         return page;
102 }
103
104 /**
105  *      free_image_page - free page represented by @addr, allocated with
106  *      get_image_page (page flags set by it must be cleared)
107  */
108
109 static inline void free_image_page(void *addr, int clear_nosave_free)
110 {
111         struct page *page;
112
113         BUG_ON(!virt_addr_valid(addr));
114
115         page = virt_to_page(addr);
116
117         swsusp_unset_page_forbidden(page);
118         if (clear_nosave_free)
119                 swsusp_unset_page_free(page);
120
121         __free_page(page);
122 }
123
124 /* struct linked_page is used to build chains of pages */
125
126 #define LINKED_PAGE_DATA_SIZE   (PAGE_SIZE - sizeof(void *))
127
128 struct linked_page {
129         struct linked_page *next;
130         char data[LINKED_PAGE_DATA_SIZE];
131 } __attribute__((packed));
132
133 static inline void
134 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
135 {
136         while (list) {
137                 struct linked_page *lp = list->next;
138
139                 free_image_page(list, clear_page_nosave);
140                 list = lp;
141         }
142 }
143
144 /**
145   *     struct chain_allocator is used for allocating small objects out of
146   *     a linked list of pages called 'the chain'.
147   *
148   *     The chain grows each time when there is no room for a new object in
149   *     the current page.  The allocated objects cannot be freed individually.
150   *     It is only possible to free them all at once, by freeing the entire
151   *     chain.
152   *
153   *     NOTE: The chain allocator may be inefficient if the allocated objects
154   *     are not much smaller than PAGE_SIZE.
155   */
156
157 struct chain_allocator {
158         struct linked_page *chain;      /* the chain */
159         unsigned int used_space;        /* total size of objects allocated out
160                                          * of the current page
161                                          */
162         gfp_t gfp_mask;         /* mask for allocating pages */
163         int safe_needed;        /* if set, only "safe" pages are allocated */
164 };
165
166 static void
167 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
168 {
169         ca->chain = NULL;
170         ca->used_space = LINKED_PAGE_DATA_SIZE;
171         ca->gfp_mask = gfp_mask;
172         ca->safe_needed = safe_needed;
173 }
174
175 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
176 {
177         void *ret;
178
179         if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
180                 struct linked_page *lp;
181
182                 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
183                 if (!lp)
184                         return NULL;
185
186                 lp->next = ca->chain;
187                 ca->chain = lp;
188                 ca->used_space = 0;
189         }
190         ret = ca->chain->data + ca->used_space;
191         ca->used_space += size;
192         return ret;
193 }
194
195 static void chain_free(struct chain_allocator *ca, int clear_page_nosave)
196 {
197         free_list_of_pages(ca->chain, clear_page_nosave);
198         memset(ca, 0, sizeof(struct chain_allocator));
199 }
200
201 /**
202  *      Data types related to memory bitmaps.
203  *
204  *      Memory bitmap is a structure consiting of many linked lists of
205  *      objects.  The main list's elements are of type struct zone_bitmap
206  *      and each of them corresonds to one zone.  For each zone bitmap
207  *      object there is a list of objects of type struct bm_block that
208  *      represent each blocks of bit chunks in which information is
209  *      stored.
210  *
211  *      struct memory_bitmap contains a pointer to the main list of zone
212  *      bitmap objects, a struct bm_position used for browsing the bitmap,
213  *      and a pointer to the list of pages used for allocating all of the
214  *      zone bitmap objects and bitmap block objects.
215  *
216  *      NOTE: It has to be possible to lay out the bitmap in memory
217  *      using only allocations of order 0.  Additionally, the bitmap is
218  *      designed to work with arbitrary number of zones (this is over the
219  *      top for now, but let's avoid making unnecessary assumptions ;-).
220  *
221  *      struct zone_bitmap contains a pointer to a list of bitmap block
222  *      objects and a pointer to the bitmap block object that has been
223  *      most recently used for setting bits.  Additionally, it contains the
224  *      pfns that correspond to the start and end of the represented zone.
225  *
226  *      struct bm_block contains a pointer to the memory page in which
227  *      information is stored (in the form of a block of bit chunks
228  *      of type unsigned long each).  It also contains the pfns that
229  *      correspond to the start and end of the represented memory area and
230  *      the number of bit chunks in the block.
231  */
232
233 #define BM_END_OF_MAP   (~0UL)
234
235 #define BM_CHUNKS_PER_BLOCK     (PAGE_SIZE / sizeof(long))
236 #define BM_BITS_PER_CHUNK       (sizeof(long) << 3)
237 #define BM_BITS_PER_BLOCK       (PAGE_SIZE << 3)
238
239 struct bm_block {
240         struct bm_block *next;          /* next element of the list */
241         unsigned long start_pfn;        /* pfn represented by the first bit */
242         unsigned long end_pfn;  /* pfn represented by the last bit plus 1 */
243         unsigned int size;      /* number of bit chunks */
244         unsigned long *data;    /* chunks of bits representing pages */
245 };
246
247 struct zone_bitmap {
248         struct zone_bitmap *next;       /* next element of the list */
249         unsigned long start_pfn;        /* minimal pfn in this zone */
250         unsigned long end_pfn;          /* maximal pfn in this zone plus 1 */
251         struct bm_block *bm_blocks;     /* list of bitmap blocks */
252         struct bm_block *cur_block;     /* recently used bitmap block */
253 };
254
255 /* strcut bm_position is used for browsing memory bitmaps */
256
257 struct bm_position {
258         struct zone_bitmap *zone_bm;
259         struct bm_block *block;
260         int chunk;
261         int bit;
262 };
263
264 struct memory_bitmap {
265         struct zone_bitmap *zone_bm_list;       /* list of zone bitmaps */
266         struct linked_page *p_list;     /* list of pages used to store zone
267                                          * bitmap objects and bitmap block
268                                          * objects
269                                          */
270         struct bm_position cur; /* most recently used bit position */
271 };
272
273 /* Functions that operate on memory bitmaps */
274
275 static inline void memory_bm_reset_chunk(struct memory_bitmap *bm)
276 {
277         bm->cur.chunk = 0;
278         bm->cur.bit = -1;
279 }
280
281 static void memory_bm_position_reset(struct memory_bitmap *bm)
282 {
283         struct zone_bitmap *zone_bm;
284
285         zone_bm = bm->zone_bm_list;
286         bm->cur.zone_bm = zone_bm;
287         bm->cur.block = zone_bm->bm_blocks;
288         memory_bm_reset_chunk(bm);
289 }
290
291 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
292
293 /**
294  *      create_bm_block_list - create a list of block bitmap objects
295  */
296
297 static inline struct bm_block *
298 create_bm_block_list(unsigned int nr_blocks, struct chain_allocator *ca)
299 {
300         struct bm_block *bblist = NULL;
301
302         while (nr_blocks-- > 0) {
303                 struct bm_block *bb;
304
305                 bb = chain_alloc(ca, sizeof(struct bm_block));
306                 if (!bb)
307                         return NULL;
308
309                 bb->next = bblist;
310                 bblist = bb;
311         }
312         return bblist;
313 }
314
315 /**
316  *      create_zone_bm_list - create a list of zone bitmap objects
317  */
318
319 static inline struct zone_bitmap *
320 create_zone_bm_list(unsigned int nr_zones, struct chain_allocator *ca)
321 {
322         struct zone_bitmap *zbmlist = NULL;
323
324         while (nr_zones-- > 0) {
325                 struct zone_bitmap *zbm;
326
327                 zbm = chain_alloc(ca, sizeof(struct zone_bitmap));
328                 if (!zbm)
329                         return NULL;
330
331                 zbm->next = zbmlist;
332                 zbmlist = zbm;
333         }
334         return zbmlist;
335 }
336
337 /**
338   *     memory_bm_create - allocate memory for a memory bitmap
339   */
340
341 static int
342 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
343 {
344         struct chain_allocator ca;
345         struct zone *zone;
346         struct zone_bitmap *zone_bm;
347         struct bm_block *bb;
348         unsigned int nr;
349
350         chain_init(&ca, gfp_mask, safe_needed);
351
352         /* Compute the number of zones */
353         nr = 0;
354         for_each_zone(zone)
355                 if (populated_zone(zone))
356                         nr++;
357
358         /* Allocate the list of zones bitmap objects */
359         zone_bm = create_zone_bm_list(nr, &ca);
360         bm->zone_bm_list = zone_bm;
361         if (!zone_bm) {
362                 chain_free(&ca, PG_UNSAFE_CLEAR);
363                 return -ENOMEM;
364         }
365
366         /* Initialize the zone bitmap objects */
367         for_each_zone(zone) {
368                 unsigned long pfn;
369
370                 if (!populated_zone(zone))
371                         continue;
372
373                 zone_bm->start_pfn = zone->zone_start_pfn;
374                 zone_bm->end_pfn = zone->zone_start_pfn + zone->spanned_pages;
375                 /* Allocate the list of bitmap block objects */
376                 nr = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
377                 bb = create_bm_block_list(nr, &ca);
378                 zone_bm->bm_blocks = bb;
379                 zone_bm->cur_block = bb;
380                 if (!bb)
381                         goto Free;
382
383                 nr = zone->spanned_pages;
384                 pfn = zone->zone_start_pfn;
385                 /* Initialize the bitmap block objects */
386                 while (bb) {
387                         unsigned long *ptr;
388
389                         ptr = get_image_page(gfp_mask, safe_needed);
390                         bb->data = ptr;
391                         if (!ptr)
392                                 goto Free;
393
394                         bb->start_pfn = pfn;
395                         if (nr >= BM_BITS_PER_BLOCK) {
396                                 pfn += BM_BITS_PER_BLOCK;
397                                 bb->size = BM_CHUNKS_PER_BLOCK;
398                                 nr -= BM_BITS_PER_BLOCK;
399                         } else {
400                                 /* This is executed only once in the loop */
401                                 pfn += nr;
402                                 bb->size = DIV_ROUND_UP(nr, BM_BITS_PER_CHUNK);
403                         }
404                         bb->end_pfn = pfn;
405                         bb = bb->next;
406                 }
407                 zone_bm = zone_bm->next;
408         }
409         bm->p_list = ca.chain;
410         memory_bm_position_reset(bm);
411         return 0;
412
413  Free:
414         bm->p_list = ca.chain;
415         memory_bm_free(bm, PG_UNSAFE_CLEAR);
416         return -ENOMEM;
417 }
418
419 /**
420   *     memory_bm_free - free memory occupied by the memory bitmap @bm
421   */
422
423 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
424 {
425         struct zone_bitmap *zone_bm;
426
427         /* Free the list of bit blocks for each zone_bitmap object */
428         zone_bm = bm->zone_bm_list;
429         while (zone_bm) {
430                 struct bm_block *bb;
431
432                 bb = zone_bm->bm_blocks;
433                 while (bb) {
434                         if (bb->data)
435                                 free_image_page(bb->data, clear_nosave_free);
436                         bb = bb->next;
437                 }
438                 zone_bm = zone_bm->next;
439         }
440         free_list_of_pages(bm->p_list, clear_nosave_free);
441         bm->zone_bm_list = NULL;
442 }
443
444 /**
445  *      memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
446  *      to given pfn.  The cur_zone_bm member of @bm and the cur_block member
447  *      of @bm->cur_zone_bm are updated.
448  */
449
450 static void memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
451                                 void **addr, unsigned int *bit_nr)
452 {
453         struct zone_bitmap *zone_bm;
454         struct bm_block *bb;
455
456         /* Check if the pfn is from the current zone */
457         zone_bm = bm->cur.zone_bm;
458         if (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
459                 zone_bm = bm->zone_bm_list;
460                 /* We don't assume that the zones are sorted by pfns */
461                 while (pfn < zone_bm->start_pfn || pfn >= zone_bm->end_pfn) {
462                         zone_bm = zone_bm->next;
463
464                         BUG_ON(!zone_bm);
465                 }
466                 bm->cur.zone_bm = zone_bm;
467         }
468         /* Check if the pfn corresponds to the current bitmap block */
469         bb = zone_bm->cur_block;
470         if (pfn < bb->start_pfn)
471                 bb = zone_bm->bm_blocks;
472
473         while (pfn >= bb->end_pfn) {
474                 bb = bb->next;
475
476                 BUG_ON(!bb);
477         }
478         zone_bm->cur_block = bb;
479         pfn -= bb->start_pfn;
480         *bit_nr = pfn % BM_BITS_PER_CHUNK;
481         *addr = bb->data + pfn / BM_BITS_PER_CHUNK;
482 }
483
484 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
485 {
486         void *addr;
487         unsigned int bit;
488
489         memory_bm_find_bit(bm, pfn, &addr, &bit);
490         set_bit(bit, addr);
491 }
492
493 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
494 {
495         void *addr;
496         unsigned int bit;
497
498         memory_bm_find_bit(bm, pfn, &addr, &bit);
499         clear_bit(bit, addr);
500 }
501
502 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
503 {
504         void *addr;
505         unsigned int bit;
506
507         memory_bm_find_bit(bm, pfn, &addr, &bit);
508         return test_bit(bit, addr);
509 }
510
511 /* Two auxiliary functions for memory_bm_next_pfn */
512
513 /* Find the first set bit in the given chunk, if there is one */
514
515 static inline int next_bit_in_chunk(int bit, unsigned long *chunk_p)
516 {
517         bit++;
518         while (bit < BM_BITS_PER_CHUNK) {
519                 if (test_bit(bit, chunk_p))
520                         return bit;
521
522                 bit++;
523         }
524         return -1;
525 }
526
527 /* Find a chunk containing some bits set in given block of bits */
528
529 static inline int next_chunk_in_block(int n, struct bm_block *bb)
530 {
531         n++;
532         while (n < bb->size) {
533                 if (bb->data[n])
534                         return n;
535
536                 n++;
537         }
538         return -1;
539 }
540
541 /**
542  *      memory_bm_next_pfn - find the pfn that corresponds to the next set bit
543  *      in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
544  *      returned.
545  *
546  *      It is required to run memory_bm_position_reset() before the first call to
547  *      this function.
548  */
549
550 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
551 {
552         struct zone_bitmap *zone_bm;
553         struct bm_block *bb;
554         int chunk;
555         int bit;
556
557         do {
558                 bb = bm->cur.block;
559                 do {
560                         chunk = bm->cur.chunk;
561                         bit = bm->cur.bit;
562                         do {
563                                 bit = next_bit_in_chunk(bit, bb->data + chunk);
564                                 if (bit >= 0)
565                                         goto Return_pfn;
566
567                                 chunk = next_chunk_in_block(chunk, bb);
568                                 bit = -1;
569                         } while (chunk >= 0);
570                         bb = bb->next;
571                         bm->cur.block = bb;
572                         memory_bm_reset_chunk(bm);
573                 } while (bb);
574                 zone_bm = bm->cur.zone_bm->next;
575                 if (zone_bm) {
576                         bm->cur.zone_bm = zone_bm;
577                         bm->cur.block = zone_bm->bm_blocks;
578                         memory_bm_reset_chunk(bm);
579                 }
580         } while (zone_bm);
581         memory_bm_position_reset(bm);
582         return BM_END_OF_MAP;
583
584  Return_pfn:
585         bm->cur.chunk = chunk;
586         bm->cur.bit = bit;
587         return bb->start_pfn + chunk * BM_BITS_PER_CHUNK + bit;
588 }
589
590 /**
591  *      This structure represents a range of page frames the contents of which
592  *      should not be saved during the suspend.
593  */
594
595 struct nosave_region {
596         struct list_head list;
597         unsigned long start_pfn;
598         unsigned long end_pfn;
599 };
600
601 static LIST_HEAD(nosave_regions);
602
603 /**
604  *      register_nosave_region - register a range of page frames the contents
605  *      of which should not be saved during the suspend (to be used in the early
606  *      initialization code)
607  */
608
609 void __init
610 register_nosave_region(unsigned long start_pfn, unsigned long end_pfn)
611 {
612         struct nosave_region *region;
613
614         if (start_pfn >= end_pfn)
615                 return;
616
617         if (!list_empty(&nosave_regions)) {
618                 /* Try to extend the previous region (they should be sorted) */
619                 region = list_entry(nosave_regions.prev,
620                                         struct nosave_region, list);
621                 if (region->end_pfn == start_pfn) {
622                         region->end_pfn = end_pfn;
623                         goto Report;
624                 }
625         }
626         /* This allocation cannot fail */
627         region = alloc_bootmem_low(sizeof(struct nosave_region));
628         region->start_pfn = start_pfn;
629         region->end_pfn = end_pfn;
630         list_add_tail(&region->list, &nosave_regions);
631  Report:
632         printk("swsusp: Registered nosave memory region: %016lx - %016lx\n",
633                 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
634 }
635
636 /*
637  * Set bits in this map correspond to the page frames the contents of which
638  * should not be saved during the suspend.
639  */
640 static struct memory_bitmap *forbidden_pages_map;
641
642 /* Set bits in this map correspond to free page frames. */
643 static struct memory_bitmap *free_pages_map;
644
645 /*
646  * Each page frame allocated for creating the image is marked by setting the
647  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
648  */
649
650 void swsusp_set_page_free(struct page *page)
651 {
652         if (free_pages_map)
653                 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
654 }
655
656 static int swsusp_page_is_free(struct page *page)
657 {
658         return free_pages_map ?
659                 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
660 }
661
662 void swsusp_unset_page_free(struct page *page)
663 {
664         if (free_pages_map)
665                 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
666 }
667
668 static void swsusp_set_page_forbidden(struct page *page)
669 {
670         if (forbidden_pages_map)
671                 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
672 }
673
674 int swsusp_page_is_forbidden(struct page *page)
675 {
676         return forbidden_pages_map ?
677                 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
678 }
679
680 static void swsusp_unset_page_forbidden(struct page *page)
681 {
682         if (forbidden_pages_map)
683                 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
684 }
685
686 /**
687  *      mark_nosave_pages - set bits corresponding to the page frames the
688  *      contents of which should not be saved in a given bitmap.
689  */
690
691 static void mark_nosave_pages(struct memory_bitmap *bm)
692 {
693         struct nosave_region *region;
694
695         if (list_empty(&nosave_regions))
696                 return;
697
698         list_for_each_entry(region, &nosave_regions, list) {
699                 unsigned long pfn;
700
701                 printk("swsusp: Marking nosave pages: %016lx - %016lx\n",
702                                 region->start_pfn << PAGE_SHIFT,
703                                 region->end_pfn << PAGE_SHIFT);
704
705                 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
706                         memory_bm_set_bit(bm, pfn);
707         }
708 }
709
710 /**
711  *      create_basic_memory_bitmaps - create bitmaps needed for marking page
712  *      frames that should not be saved and free page frames.  The pointers
713  *      forbidden_pages_map and free_pages_map are only modified if everything
714  *      goes well, because we don't want the bits to be used before both bitmaps
715  *      are set up.
716  */
717
718 int create_basic_memory_bitmaps(void)
719 {
720         struct memory_bitmap *bm1, *bm2;
721         int error = 0;
722
723         BUG_ON(forbidden_pages_map || free_pages_map);
724
725         bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
726         if (!bm1)
727                 return -ENOMEM;
728
729         error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
730         if (error)
731                 goto Free_first_object;
732
733         bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
734         if (!bm2)
735                 goto Free_first_bitmap;
736
737         error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
738         if (error)
739                 goto Free_second_object;
740
741         forbidden_pages_map = bm1;
742         free_pages_map = bm2;
743         mark_nosave_pages(forbidden_pages_map);
744
745         printk("swsusp: Basic memory bitmaps created\n");
746
747         return 0;
748
749  Free_second_object:
750         kfree(bm2);
751  Free_first_bitmap:
752         memory_bm_free(bm1, PG_UNSAFE_CLEAR);
753  Free_first_object:
754         kfree(bm1);
755         return -ENOMEM;
756 }
757
758 /**
759  *      free_basic_memory_bitmaps - free memory bitmaps allocated by
760  *      create_basic_memory_bitmaps().  The auxiliary pointers are necessary
761  *      so that the bitmaps themselves are not referred to while they are being
762  *      freed.
763  */
764
765 void free_basic_memory_bitmaps(void)
766 {
767         struct memory_bitmap *bm1, *bm2;
768
769         BUG_ON(!(forbidden_pages_map && free_pages_map));
770
771         bm1 = forbidden_pages_map;
772         bm2 = free_pages_map;
773         forbidden_pages_map = NULL;
774         free_pages_map = NULL;
775         memory_bm_free(bm1, PG_UNSAFE_CLEAR);
776         kfree(bm1);
777         memory_bm_free(bm2, PG_UNSAFE_CLEAR);
778         kfree(bm2);
779
780         printk("swsusp: Basic memory bitmaps freed\n");
781 }
782
783 /**
784  *      snapshot_additional_pages - estimate the number of additional pages
785  *      be needed for setting up the suspend image data structures for given
786  *      zone (usually the returned value is greater than the exact number)
787  */
788
789 unsigned int snapshot_additional_pages(struct zone *zone)
790 {
791         unsigned int res;
792
793         res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
794         res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE);
795         return 2 * res;
796 }
797
798 #ifdef CONFIG_HIGHMEM
799 /**
800  *      count_free_highmem_pages - compute the total number of free highmem
801  *      pages, system-wide.
802  */
803
804 static unsigned int count_free_highmem_pages(void)
805 {
806         struct zone *zone;
807         unsigned int cnt = 0;
808
809         for_each_zone(zone)
810                 if (populated_zone(zone) && is_highmem(zone))
811                         cnt += zone_page_state(zone, NR_FREE_PAGES);
812
813         return cnt;
814 }
815
816 /**
817  *      saveable_highmem_page - Determine whether a highmem page should be
818  *      included in the suspend image.
819  *
820  *      We should save the page if it isn't Nosave or NosaveFree, or Reserved,
821  *      and it isn't a part of a free chunk of pages.
822  */
823
824 static struct page *saveable_highmem_page(unsigned long pfn)
825 {
826         struct page *page;
827
828         if (!pfn_valid(pfn))
829                 return NULL;
830
831         page = pfn_to_page(pfn);
832
833         BUG_ON(!PageHighMem(page));
834
835         if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
836             PageReserved(page))
837                 return NULL;
838
839         return page;
840 }
841
842 /**
843  *      count_highmem_pages - compute the total number of saveable highmem
844  *      pages.
845  */
846
847 unsigned int count_highmem_pages(void)
848 {
849         struct zone *zone;
850         unsigned int n = 0;
851
852         for_each_zone(zone) {
853                 unsigned long pfn, max_zone_pfn;
854
855                 if (!is_highmem(zone))
856                         continue;
857
858                 mark_free_pages(zone);
859                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
860                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
861                         if (saveable_highmem_page(pfn))
862                                 n++;
863         }
864         return n;
865 }
866 #else
867 static inline void *saveable_highmem_page(unsigned long pfn) { return NULL; }
868 static inline unsigned int count_highmem_pages(void) { return 0; }
869 #endif /* CONFIG_HIGHMEM */
870
871 /**
872  *      saveable - Determine whether a non-highmem page should be included in
873  *      the suspend image.
874  *
875  *      We should save the page if it isn't Nosave, and is not in the range
876  *      of pages statically defined as 'unsaveable', and it isn't a part of
877  *      a free chunk of pages.
878  */
879
880 static struct page *saveable_page(unsigned long pfn)
881 {
882         struct page *page;
883
884         if (!pfn_valid(pfn))
885                 return NULL;
886
887         page = pfn_to_page(pfn);
888
889         BUG_ON(PageHighMem(page));
890
891         if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
892                 return NULL;
893
894         if (PageReserved(page) && pfn_is_nosave(pfn))
895                 return NULL;
896
897         return page;
898 }
899
900 /**
901  *      count_data_pages - compute the total number of saveable non-highmem
902  *      pages.
903  */
904
905 unsigned int count_data_pages(void)
906 {
907         struct zone *zone;
908         unsigned long pfn, max_zone_pfn;
909         unsigned int n = 0;
910
911         for_each_zone(zone) {
912                 if (is_highmem(zone))
913                         continue;
914
915                 mark_free_pages(zone);
916                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
917                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
918                         if(saveable_page(pfn))
919                                 n++;
920         }
921         return n;
922 }
923
924 /* This is needed, because copy_page and memcpy are not usable for copying
925  * task structs.
926  */
927 static inline void do_copy_page(long *dst, long *src)
928 {
929         int n;
930
931         for (n = PAGE_SIZE / sizeof(long); n; n--)
932                 *dst++ = *src++;
933 }
934
935 #ifdef CONFIG_HIGHMEM
936 static inline struct page *
937 page_is_saveable(struct zone *zone, unsigned long pfn)
938 {
939         return is_highmem(zone) ?
940                         saveable_highmem_page(pfn) : saveable_page(pfn);
941 }
942
943 static inline void
944 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
945 {
946         struct page *s_page, *d_page;
947         void *src, *dst;
948
949         s_page = pfn_to_page(src_pfn);
950         d_page = pfn_to_page(dst_pfn);
951         if (PageHighMem(s_page)) {
952                 src = kmap_atomic(s_page, KM_USER0);
953                 dst = kmap_atomic(d_page, KM_USER1);
954                 do_copy_page(dst, src);
955                 kunmap_atomic(src, KM_USER0);
956                 kunmap_atomic(dst, KM_USER1);
957         } else {
958                 src = page_address(s_page);
959                 if (PageHighMem(d_page)) {
960                         /* Page pointed to by src may contain some kernel
961                          * data modified by kmap_atomic()
962                          */
963                         do_copy_page(buffer, src);
964                         dst = kmap_atomic(pfn_to_page(dst_pfn), KM_USER0);
965                         memcpy(dst, buffer, PAGE_SIZE);
966                         kunmap_atomic(dst, KM_USER0);
967                 } else {
968                         dst = page_address(d_page);
969                         do_copy_page(dst, src);
970                 }
971         }
972 }
973 #else
974 #define page_is_saveable(zone, pfn)     saveable_page(pfn)
975
976 static inline void
977 copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
978 {
979         do_copy_page(page_address(pfn_to_page(dst_pfn)),
980                         page_address(pfn_to_page(src_pfn)));
981 }
982 #endif /* CONFIG_HIGHMEM */
983
984 static void
985 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
986 {
987         struct zone *zone;
988         unsigned long pfn;
989
990         for_each_zone(zone) {
991                 unsigned long max_zone_pfn;
992
993                 mark_free_pages(zone);
994                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
995                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
996                         if (page_is_saveable(zone, pfn))
997                                 memory_bm_set_bit(orig_bm, pfn);
998         }
999         memory_bm_position_reset(orig_bm);
1000         memory_bm_position_reset(copy_bm);
1001         do {
1002                 pfn = memory_bm_next_pfn(orig_bm);
1003                 if (likely(pfn != BM_END_OF_MAP))
1004                         copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1005         } while (pfn != BM_END_OF_MAP);
1006 }
1007
1008 /* Total number of image pages */
1009 static unsigned int nr_copy_pages;
1010 /* Number of pages needed for saving the original pfns of the image pages */
1011 static unsigned int nr_meta_pages;
1012
1013 /**
1014  *      swsusp_free - free pages allocated for the suspend.
1015  *
1016  *      Suspend pages are alocated before the atomic copy is made, so we
1017  *      need to release them after the resume.
1018  */
1019
1020 void swsusp_free(void)
1021 {
1022         struct zone *zone;
1023         unsigned long pfn, max_zone_pfn;
1024
1025         for_each_zone(zone) {
1026                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1027                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1028                         if (pfn_valid(pfn)) {
1029                                 struct page *page = pfn_to_page(pfn);
1030
1031                                 if (swsusp_page_is_forbidden(page) &&
1032                                     swsusp_page_is_free(page)) {
1033                                         swsusp_unset_page_forbidden(page);
1034                                         swsusp_unset_page_free(page);
1035                                         __free_page(page);
1036                                 }
1037                         }
1038         }
1039         nr_copy_pages = 0;
1040         nr_meta_pages = 0;
1041         restore_pblist = NULL;
1042         buffer = NULL;
1043 }
1044
1045 #ifdef CONFIG_HIGHMEM
1046 /**
1047   *     count_pages_for_highmem - compute the number of non-highmem pages
1048   *     that will be necessary for creating copies of highmem pages.
1049   */
1050
1051 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1052 {
1053         unsigned int free_highmem = count_free_highmem_pages();
1054
1055         if (free_highmem >= nr_highmem)
1056                 nr_highmem = 0;
1057         else
1058                 nr_highmem -= free_highmem;
1059
1060         return nr_highmem;
1061 }
1062 #else
1063 static unsigned int
1064 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1065 #endif /* CONFIG_HIGHMEM */
1066
1067 /**
1068  *      enough_free_mem - Make sure we have enough free memory for the
1069  *      snapshot image.
1070  */
1071
1072 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1073 {
1074         struct zone *zone;
1075         unsigned int free = 0, meta = 0;
1076
1077         for_each_zone(zone) {
1078                 meta += snapshot_additional_pages(zone);
1079                 if (!is_highmem(zone))
1080                         free += zone_page_state(zone, NR_FREE_PAGES);
1081         }
1082
1083         nr_pages += count_pages_for_highmem(nr_highmem);
1084         pr_debug("swsusp: Normal pages needed: %u + %u + %u, available pages: %u\n",
1085                 nr_pages, PAGES_FOR_IO, meta, free);
1086
1087         return free > nr_pages + PAGES_FOR_IO + meta;
1088 }
1089
1090 #ifdef CONFIG_HIGHMEM
1091 /**
1092  *      get_highmem_buffer - if there are some highmem pages in the suspend
1093  *      image, we may need the buffer to copy them and/or load their data.
1094  */
1095
1096 static inline int get_highmem_buffer(int safe_needed)
1097 {
1098         buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1099         return buffer ? 0 : -ENOMEM;
1100 }
1101
1102 /**
1103  *      alloc_highmem_image_pages - allocate some highmem pages for the image.
1104  *      Try to allocate as many pages as needed, but if the number of free
1105  *      highmem pages is lesser than that, allocate them all.
1106  */
1107
1108 static inline unsigned int
1109 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1110 {
1111         unsigned int to_alloc = count_free_highmem_pages();
1112
1113         if (to_alloc > nr_highmem)
1114                 to_alloc = nr_highmem;
1115
1116         nr_highmem -= to_alloc;
1117         while (to_alloc-- > 0) {
1118                 struct page *page;
1119
1120                 page = alloc_image_page(__GFP_HIGHMEM);
1121                 memory_bm_set_bit(bm, page_to_pfn(page));
1122         }
1123         return nr_highmem;
1124 }
1125 #else
1126 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1127
1128 static inline unsigned int
1129 alloc_highmem_image_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1130 #endif /* CONFIG_HIGHMEM */
1131
1132 /**
1133  *      swsusp_alloc - allocate memory for the suspend image
1134  *
1135  *      We first try to allocate as many highmem pages as there are
1136  *      saveable highmem pages in the system.  If that fails, we allocate
1137  *      non-highmem pages for the copies of the remaining highmem ones.
1138  *
1139  *      In this approach it is likely that the copies of highmem pages will
1140  *      also be located in the high memory, because of the way in which
1141  *      copy_data_pages() works.
1142  */
1143
1144 static int
1145 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1146                 unsigned int nr_pages, unsigned int nr_highmem)
1147 {
1148         int error;
1149
1150         error = memory_bm_create(orig_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1151         if (error)
1152                 goto Free;
1153
1154         error = memory_bm_create(copy_bm, GFP_ATOMIC | __GFP_COLD, PG_ANY);
1155         if (error)
1156                 goto Free;
1157
1158         if (nr_highmem > 0) {
1159                 error = get_highmem_buffer(PG_ANY);
1160                 if (error)
1161                         goto Free;
1162
1163                 nr_pages += alloc_highmem_image_pages(copy_bm, nr_highmem);
1164         }
1165         while (nr_pages-- > 0) {
1166                 struct page *page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1167
1168                 if (!page)
1169                         goto Free;
1170
1171                 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1172         }
1173         return 0;
1174
1175  Free:
1176         swsusp_free();
1177         return -ENOMEM;
1178 }
1179
1180 /* Memory bitmap used for marking saveable pages (during suspend) or the
1181  * suspend image pages (during resume)
1182  */
1183 static struct memory_bitmap orig_bm;
1184 /* Memory bitmap used on suspend for marking allocated pages that will contain
1185  * the copies of saveable pages.  During resume it is initially used for
1186  * marking the suspend image pages, but then its set bits are duplicated in
1187  * @orig_bm and it is released.  Next, on systems with high memory, it may be
1188  * used for marking "safe" highmem pages, but it has to be reinitialized for
1189  * this purpose.
1190  */
1191 static struct memory_bitmap copy_bm;
1192
1193 asmlinkage int swsusp_save(void)
1194 {
1195         unsigned int nr_pages, nr_highmem;
1196
1197         printk("swsusp: critical section: \n");
1198
1199         drain_local_pages();
1200         nr_pages = count_data_pages();
1201         nr_highmem = count_highmem_pages();
1202         printk("swsusp: Need to copy %u pages\n", nr_pages + nr_highmem);
1203
1204         if (!enough_free_mem(nr_pages, nr_highmem)) {
1205                 printk(KERN_ERR "swsusp: Not enough free memory\n");
1206                 return -ENOMEM;
1207         }
1208
1209         if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1210                 printk(KERN_ERR "swsusp: Memory allocation failed\n");
1211                 return -ENOMEM;
1212         }
1213
1214         /* During allocating of suspend pagedir, new cold pages may appear.
1215          * Kill them.
1216          */
1217         drain_local_pages();
1218         copy_data_pages(&copy_bm, &orig_bm);
1219
1220         /*
1221          * End of critical section. From now on, we can write to memory,
1222          * but we should not touch disk. This specially means we must _not_
1223          * touch swap space! Except we must write out our image of course.
1224          */
1225
1226         nr_pages += nr_highmem;
1227         nr_copy_pages = nr_pages;
1228         nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1229
1230         printk("swsusp: critical section: done (%d pages copied)\n", nr_pages);
1231
1232         return 0;
1233 }
1234
1235 static void init_header(struct swsusp_info *info)
1236 {
1237         memset(info, 0, sizeof(struct swsusp_info));
1238         info->version_code = LINUX_VERSION_CODE;
1239         info->num_physpages = num_physpages;
1240         memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1241         info->cpus = num_online_cpus();
1242         info->image_pages = nr_copy_pages;
1243         info->pages = nr_copy_pages + nr_meta_pages + 1;
1244         info->size = info->pages;
1245         info->size <<= PAGE_SHIFT;
1246 }
1247
1248 /**
1249  *      pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1250  *      are stored in the array @buf[] (1 page at a time)
1251  */
1252
1253 static inline void
1254 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1255 {
1256         int j;
1257
1258         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1259                 buf[j] = memory_bm_next_pfn(bm);
1260                 if (unlikely(buf[j] == BM_END_OF_MAP))
1261                         break;
1262         }
1263 }
1264
1265 /**
1266  *      snapshot_read_next - used for reading the system memory snapshot.
1267  *
1268  *      On the first call to it @handle should point to a zeroed
1269  *      snapshot_handle structure.  The structure gets updated and a pointer
1270  *      to it should be passed to this function every next time.
1271  *
1272  *      The @count parameter should contain the number of bytes the caller
1273  *      wants to read from the snapshot.  It must not be zero.
1274  *
1275  *      On success the function returns a positive number.  Then, the caller
1276  *      is allowed to read up to the returned number of bytes from the memory
1277  *      location computed by the data_of() macro.  The number returned
1278  *      may be smaller than @count, but this only happens if the read would
1279  *      cross a page boundary otherwise.
1280  *
1281  *      The function returns 0 to indicate the end of data stream condition,
1282  *      and a negative number is returned on error.  In such cases the
1283  *      structure pointed to by @handle is not updated and should not be used
1284  *      any more.
1285  */
1286
1287 int snapshot_read_next(struct snapshot_handle *handle, size_t count)
1288 {
1289         if (handle->cur > nr_meta_pages + nr_copy_pages)
1290                 return 0;
1291
1292         if (!buffer) {
1293                 /* This makes the buffer be freed by swsusp_free() */
1294                 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1295                 if (!buffer)
1296                         return -ENOMEM;
1297         }
1298         if (!handle->offset) {
1299                 init_header((struct swsusp_info *)buffer);
1300                 handle->buffer = buffer;
1301                 memory_bm_position_reset(&orig_bm);
1302                 memory_bm_position_reset(&copy_bm);
1303         }
1304         if (handle->prev < handle->cur) {
1305                 if (handle->cur <= nr_meta_pages) {
1306                         memset(buffer, 0, PAGE_SIZE);
1307                         pack_pfns(buffer, &orig_bm);
1308                 } else {
1309                         struct page *page;
1310
1311                         page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1312                         if (PageHighMem(page)) {
1313                                 /* Highmem pages are copied to the buffer,
1314                                  * because we can't return with a kmapped
1315                                  * highmem page (we may not be called again).
1316                                  */
1317                                 void *kaddr;
1318
1319                                 kaddr = kmap_atomic(page, KM_USER0);
1320                                 memcpy(buffer, kaddr, PAGE_SIZE);
1321                                 kunmap_atomic(kaddr, KM_USER0);
1322                                 handle->buffer = buffer;
1323                         } else {
1324                                 handle->buffer = page_address(page);
1325                         }
1326                 }
1327                 handle->prev = handle->cur;
1328         }
1329         handle->buf_offset = handle->cur_offset;
1330         if (handle->cur_offset + count >= PAGE_SIZE) {
1331                 count = PAGE_SIZE - handle->cur_offset;
1332                 handle->cur_offset = 0;
1333                 handle->cur++;
1334         } else {
1335                 handle->cur_offset += count;
1336         }
1337         handle->offset += count;
1338         return count;
1339 }
1340
1341 /**
1342  *      mark_unsafe_pages - mark the pages that cannot be used for storing
1343  *      the image during resume, because they conflict with the pages that
1344  *      had been used before suspend
1345  */
1346
1347 static int mark_unsafe_pages(struct memory_bitmap *bm)
1348 {
1349         struct zone *zone;
1350         unsigned long pfn, max_zone_pfn;
1351
1352         /* Clear page flags */
1353         for_each_zone(zone) {
1354                 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1355                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1356                         if (pfn_valid(pfn))
1357                                 swsusp_unset_page_free(pfn_to_page(pfn));
1358         }
1359
1360         /* Mark pages that correspond to the "original" pfns as "unsafe" */
1361         memory_bm_position_reset(bm);
1362         do {
1363                 pfn = memory_bm_next_pfn(bm);
1364                 if (likely(pfn != BM_END_OF_MAP)) {
1365                         if (likely(pfn_valid(pfn)))
1366                                 swsusp_set_page_free(pfn_to_page(pfn));
1367                         else
1368                                 return -EFAULT;
1369                 }
1370         } while (pfn != BM_END_OF_MAP);
1371
1372         allocated_unsafe_pages = 0;
1373
1374         return 0;
1375 }
1376
1377 static void
1378 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1379 {
1380         unsigned long pfn;
1381
1382         memory_bm_position_reset(src);
1383         pfn = memory_bm_next_pfn(src);
1384         while (pfn != BM_END_OF_MAP) {
1385                 memory_bm_set_bit(dst, pfn);
1386                 pfn = memory_bm_next_pfn(src);
1387         }
1388 }
1389
1390 static inline int check_header(struct swsusp_info *info)
1391 {
1392         char *reason = NULL;
1393
1394         if (info->version_code != LINUX_VERSION_CODE)
1395                 reason = "kernel version";
1396         if (info->num_physpages != num_physpages)
1397                 reason = "memory size";
1398         if (strcmp(info->uts.sysname,init_utsname()->sysname))
1399                 reason = "system type";
1400         if (strcmp(info->uts.release,init_utsname()->release))
1401                 reason = "kernel release";
1402         if (strcmp(info->uts.version,init_utsname()->version))
1403                 reason = "version";
1404         if (strcmp(info->uts.machine,init_utsname()->machine))
1405                 reason = "machine";
1406         if (reason) {
1407                 printk(KERN_ERR "swsusp: Resume mismatch: %s\n", reason);
1408                 return -EPERM;
1409         }
1410         return 0;
1411 }
1412
1413 /**
1414  *      load header - check the image header and copy data from it
1415  */
1416
1417 static int
1418 load_header(struct swsusp_info *info)
1419 {
1420         int error;
1421
1422         restore_pblist = NULL;
1423         error = check_header(info);
1424         if (!error) {
1425                 nr_copy_pages = info->image_pages;
1426                 nr_meta_pages = info->pages - info->image_pages - 1;
1427         }
1428         return error;
1429 }
1430
1431 /**
1432  *      unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1433  *      the corresponding bit in the memory bitmap @bm
1434  */
1435
1436 static inline void
1437 unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1438 {
1439         int j;
1440
1441         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1442                 if (unlikely(buf[j] == BM_END_OF_MAP))
1443                         break;
1444
1445                 memory_bm_set_bit(bm, buf[j]);
1446         }
1447 }
1448
1449 /* List of "safe" pages that may be used to store data loaded from the suspend
1450  * image
1451  */
1452 static struct linked_page *safe_pages_list;
1453
1454 #ifdef CONFIG_HIGHMEM
1455 /* struct highmem_pbe is used for creating the list of highmem pages that
1456  * should be restored atomically during the resume from disk, because the page
1457  * frames they have occupied before the suspend are in use.
1458  */
1459 struct highmem_pbe {
1460         struct page *copy_page; /* data is here now */
1461         struct page *orig_page; /* data was here before the suspend */
1462         struct highmem_pbe *next;
1463 };
1464
1465 /* List of highmem PBEs needed for restoring the highmem pages that were
1466  * allocated before the suspend and included in the suspend image, but have
1467  * also been allocated by the "resume" kernel, so their contents cannot be
1468  * written directly to their "original" page frames.
1469  */
1470 static struct highmem_pbe *highmem_pblist;
1471
1472 /**
1473  *      count_highmem_image_pages - compute the number of highmem pages in the
1474  *      suspend image.  The bits in the memory bitmap @bm that correspond to the
1475  *      image pages are assumed to be set.
1476  */
1477
1478 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1479 {
1480         unsigned long pfn;
1481         unsigned int cnt = 0;
1482
1483         memory_bm_position_reset(bm);
1484         pfn = memory_bm_next_pfn(bm);
1485         while (pfn != BM_END_OF_MAP) {
1486                 if (PageHighMem(pfn_to_page(pfn)))
1487                         cnt++;
1488
1489                 pfn = memory_bm_next_pfn(bm);
1490         }
1491         return cnt;
1492 }
1493
1494 /**
1495  *      prepare_highmem_image - try to allocate as many highmem pages as
1496  *      there are highmem image pages (@nr_highmem_p points to the variable
1497  *      containing the number of highmem image pages).  The pages that are
1498  *      "safe" (ie. will not be overwritten when the suspend image is
1499  *      restored) have the corresponding bits set in @bm (it must be
1500  *      unitialized).
1501  *
1502  *      NOTE: This function should not be called if there are no highmem
1503  *      image pages.
1504  */
1505
1506 static unsigned int safe_highmem_pages;
1507
1508 static struct memory_bitmap *safe_highmem_bm;
1509
1510 static int
1511 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1512 {
1513         unsigned int to_alloc;
1514
1515         if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1516                 return -ENOMEM;
1517
1518         if (get_highmem_buffer(PG_SAFE))
1519                 return -ENOMEM;
1520
1521         to_alloc = count_free_highmem_pages();
1522         if (to_alloc > *nr_highmem_p)
1523                 to_alloc = *nr_highmem_p;
1524         else
1525                 *nr_highmem_p = to_alloc;
1526
1527         safe_highmem_pages = 0;
1528         while (to_alloc-- > 0) {
1529                 struct page *page;
1530
1531                 page = alloc_page(__GFP_HIGHMEM);
1532                 if (!swsusp_page_is_free(page)) {
1533                         /* The page is "safe", set its bit the bitmap */
1534                         memory_bm_set_bit(bm, page_to_pfn(page));
1535                         safe_highmem_pages++;
1536                 }
1537                 /* Mark the page as allocated */
1538                 swsusp_set_page_forbidden(page);
1539                 swsusp_set_page_free(page);
1540         }
1541         memory_bm_position_reset(bm);
1542         safe_highmem_bm = bm;
1543         return 0;
1544 }
1545
1546 /**
1547  *      get_highmem_page_buffer - for given highmem image page find the buffer
1548  *      that suspend_write_next() should set for its caller to write to.
1549  *
1550  *      If the page is to be saved to its "original" page frame or a copy of
1551  *      the page is to be made in the highmem, @buffer is returned.  Otherwise,
1552  *      the copy of the page is to be made in normal memory, so the address of
1553  *      the copy is returned.
1554  *
1555  *      If @buffer is returned, the caller of suspend_write_next() will write
1556  *      the page's contents to @buffer, so they will have to be copied to the
1557  *      right location on the next call to suspend_write_next() and it is done
1558  *      with the help of copy_last_highmem_page().  For this purpose, if
1559  *      @buffer is returned, @last_highmem page is set to the page to which
1560  *      the data will have to be copied from @buffer.
1561  */
1562
1563 static struct page *last_highmem_page;
1564
1565 static void *
1566 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1567 {
1568         struct highmem_pbe *pbe;
1569         void *kaddr;
1570
1571         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1572                 /* We have allocated the "original" page frame and we can
1573                  * use it directly to store the loaded page.
1574                  */
1575                 last_highmem_page = page;
1576                 return buffer;
1577         }
1578         /* The "original" page frame has not been allocated and we have to
1579          * use a "safe" page frame to store the loaded page.
1580          */
1581         pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1582         if (!pbe) {
1583                 swsusp_free();
1584                 return NULL;
1585         }
1586         pbe->orig_page = page;
1587         if (safe_highmem_pages > 0) {
1588                 struct page *tmp;
1589
1590                 /* Copy of the page will be stored in high memory */
1591                 kaddr = buffer;
1592                 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1593                 safe_highmem_pages--;
1594                 last_highmem_page = tmp;
1595                 pbe->copy_page = tmp;
1596         } else {
1597                 /* Copy of the page will be stored in normal memory */
1598                 kaddr = safe_pages_list;
1599                 safe_pages_list = safe_pages_list->next;
1600                 pbe->copy_page = virt_to_page(kaddr);
1601         }
1602         pbe->next = highmem_pblist;
1603         highmem_pblist = pbe;
1604         return kaddr;
1605 }
1606
1607 /**
1608  *      copy_last_highmem_page - copy the contents of a highmem image from
1609  *      @buffer, where the caller of snapshot_write_next() has place them,
1610  *      to the right location represented by @last_highmem_page .
1611  */
1612
1613 static void copy_last_highmem_page(void)
1614 {
1615         if (last_highmem_page) {
1616                 void *dst;
1617
1618                 dst = kmap_atomic(last_highmem_page, KM_USER0);
1619                 memcpy(dst, buffer, PAGE_SIZE);
1620                 kunmap_atomic(dst, KM_USER0);
1621                 last_highmem_page = NULL;
1622         }
1623 }
1624
1625 static inline int last_highmem_page_copied(void)
1626 {
1627         return !last_highmem_page;
1628 }
1629
1630 static inline void free_highmem_data(void)
1631 {
1632         if (safe_highmem_bm)
1633                 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
1634
1635         if (buffer)
1636                 free_image_page(buffer, PG_UNSAFE_CLEAR);
1637 }
1638 #else
1639 static inline int get_safe_write_buffer(void) { return 0; }
1640
1641 static unsigned int
1642 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
1643
1644 static inline int
1645 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1646 {
1647         return 0;
1648 }
1649
1650 static inline void *
1651 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1652 {
1653         return NULL;
1654 }
1655
1656 static inline void copy_last_highmem_page(void) {}
1657 static inline int last_highmem_page_copied(void) { return 1; }
1658 static inline void free_highmem_data(void) {}
1659 #endif /* CONFIG_HIGHMEM */
1660
1661 /**
1662  *      prepare_image - use the memory bitmap @bm to mark the pages that will
1663  *      be overwritten in the process of restoring the system memory state
1664  *      from the suspend image ("unsafe" pages) and allocate memory for the
1665  *      image.
1666  *
1667  *      The idea is to allocate a new memory bitmap first and then allocate
1668  *      as many pages as needed for the image data, but not to assign these
1669  *      pages to specific tasks initially.  Instead, we just mark them as
1670  *      allocated and create a lists of "safe" pages that will be used
1671  *      later.  On systems with high memory a list of "safe" highmem pages is
1672  *      also created.
1673  */
1674
1675 #define PBES_PER_LINKED_PAGE    (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
1676
1677 static int
1678 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
1679 {
1680         unsigned int nr_pages, nr_highmem;
1681         struct linked_page *sp_list, *lp;
1682         int error;
1683
1684         /* If there is no highmem, the buffer will not be necessary */
1685         free_image_page(buffer, PG_UNSAFE_CLEAR);
1686         buffer = NULL;
1687
1688         nr_highmem = count_highmem_image_pages(bm);
1689         error = mark_unsafe_pages(bm);
1690         if (error)
1691                 goto Free;
1692
1693         error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
1694         if (error)
1695                 goto Free;
1696
1697         duplicate_memory_bitmap(new_bm, bm);
1698         memory_bm_free(bm, PG_UNSAFE_KEEP);
1699         if (nr_highmem > 0) {
1700                 error = prepare_highmem_image(bm, &nr_highmem);
1701                 if (error)
1702                         goto Free;
1703         }
1704         /* Reserve some safe pages for potential later use.
1705          *
1706          * NOTE: This way we make sure there will be enough safe pages for the
1707          * chain_alloc() in get_buffer().  It is a bit wasteful, but
1708          * nr_copy_pages cannot be greater than 50% of the memory anyway.
1709          */
1710         sp_list = NULL;
1711         /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
1712         nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1713         nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
1714         while (nr_pages > 0) {
1715                 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
1716                 if (!lp) {
1717                         error = -ENOMEM;
1718                         goto Free;
1719                 }
1720                 lp->next = sp_list;
1721                 sp_list = lp;
1722                 nr_pages--;
1723         }
1724         /* Preallocate memory for the image */
1725         safe_pages_list = NULL;
1726         nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
1727         while (nr_pages > 0) {
1728                 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
1729                 if (!lp) {
1730                         error = -ENOMEM;
1731                         goto Free;
1732                 }
1733                 if (!swsusp_page_is_free(virt_to_page(lp))) {
1734                         /* The page is "safe", add it to the list */
1735                         lp->next = safe_pages_list;
1736                         safe_pages_list = lp;
1737                 }
1738                 /* Mark the page as allocated */
1739                 swsusp_set_page_forbidden(virt_to_page(lp));
1740                 swsusp_set_page_free(virt_to_page(lp));
1741                 nr_pages--;
1742         }
1743         /* Free the reserved safe pages so that chain_alloc() can use them */
1744         while (sp_list) {
1745                 lp = sp_list->next;
1746                 free_image_page(sp_list, PG_UNSAFE_CLEAR);
1747                 sp_list = lp;
1748         }
1749         return 0;
1750
1751  Free:
1752         swsusp_free();
1753         return error;
1754 }
1755
1756 /**
1757  *      get_buffer - compute the address that snapshot_write_next() should
1758  *      set for its caller to write to.
1759  */
1760
1761 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
1762 {
1763         struct pbe *pbe;
1764         struct page *page = pfn_to_page(memory_bm_next_pfn(bm));
1765
1766         if (PageHighMem(page))
1767                 return get_highmem_page_buffer(page, ca);
1768
1769         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
1770                 /* We have allocated the "original" page frame and we can
1771                  * use it directly to store the loaded page.
1772                  */
1773                 return page_address(page);
1774
1775         /* The "original" page frame has not been allocated and we have to
1776          * use a "safe" page frame to store the loaded page.
1777          */
1778         pbe = chain_alloc(ca, sizeof(struct pbe));
1779         if (!pbe) {
1780                 swsusp_free();
1781                 return NULL;
1782         }
1783         pbe->orig_address = page_address(page);
1784         pbe->address = safe_pages_list;
1785         safe_pages_list = safe_pages_list->next;
1786         pbe->next = restore_pblist;
1787         restore_pblist = pbe;
1788         return pbe->address;
1789 }
1790
1791 /**
1792  *      snapshot_write_next - used for writing the system memory snapshot.
1793  *
1794  *      On the first call to it @handle should point to a zeroed
1795  *      snapshot_handle structure.  The structure gets updated and a pointer
1796  *      to it should be passed to this function every next time.
1797  *
1798  *      The @count parameter should contain the number of bytes the caller
1799  *      wants to write to the image.  It must not be zero.
1800  *
1801  *      On success the function returns a positive number.  Then, the caller
1802  *      is allowed to write up to the returned number of bytes to the memory
1803  *      location computed by the data_of() macro.  The number returned
1804  *      may be smaller than @count, but this only happens if the write would
1805  *      cross a page boundary otherwise.
1806  *
1807  *      The function returns 0 to indicate the "end of file" condition,
1808  *      and a negative number is returned on error.  In such cases the
1809  *      structure pointed to by @handle is not updated and should not be used
1810  *      any more.
1811  */
1812
1813 int snapshot_write_next(struct snapshot_handle *handle, size_t count)
1814 {
1815         static struct chain_allocator ca;
1816         int error = 0;
1817
1818         /* Check if we have already loaded the entire image */
1819         if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages)
1820                 return 0;
1821
1822         if (handle->offset == 0) {
1823                 if (!buffer)
1824                         /* This makes the buffer be freed by swsusp_free() */
1825                         buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1826
1827                 if (!buffer)
1828                         return -ENOMEM;
1829
1830                 handle->buffer = buffer;
1831         }
1832         handle->sync_read = 1;
1833         if (handle->prev < handle->cur) {
1834                 if (handle->prev == 0) {
1835                         error = load_header(buffer);
1836                         if (error)
1837                                 return error;
1838
1839                         error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
1840                         if (error)
1841                                 return error;
1842
1843                 } else if (handle->prev <= nr_meta_pages) {
1844                         unpack_orig_pfns(buffer, &copy_bm);
1845                         if (handle->prev == nr_meta_pages) {
1846                                 error = prepare_image(&orig_bm, &copy_bm);
1847                                 if (error)
1848                                         return error;
1849
1850                                 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
1851                                 memory_bm_position_reset(&orig_bm);
1852                                 restore_pblist = NULL;
1853                                 handle->buffer = get_buffer(&orig_bm, &ca);
1854                                 handle->sync_read = 0;
1855                                 if (!handle->buffer)
1856                                         return -ENOMEM;
1857                         }
1858                 } else {
1859                         copy_last_highmem_page();
1860                         handle->buffer = get_buffer(&orig_bm, &ca);
1861                         if (handle->buffer != buffer)
1862                                 handle->sync_read = 0;
1863                 }
1864                 handle->prev = handle->cur;
1865         }
1866         handle->buf_offset = handle->cur_offset;
1867         if (handle->cur_offset + count >= PAGE_SIZE) {
1868                 count = PAGE_SIZE - handle->cur_offset;
1869                 handle->cur_offset = 0;
1870                 handle->cur++;
1871         } else {
1872                 handle->cur_offset += count;
1873         }
1874         handle->offset += count;
1875         return count;
1876 }
1877
1878 /**
1879  *      snapshot_write_finalize - must be called after the last call to
1880  *      snapshot_write_next() in case the last page in the image happens
1881  *      to be a highmem page and its contents should be stored in the
1882  *      highmem.  Additionally, it releases the memory that will not be
1883  *      used any more.
1884  */
1885
1886 void snapshot_write_finalize(struct snapshot_handle *handle)
1887 {
1888         copy_last_highmem_page();
1889         /* Free only if we have loaded the image entirely */
1890         if (handle->prev && handle->cur > nr_meta_pages + nr_copy_pages) {
1891                 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
1892                 free_highmem_data();
1893         }
1894 }
1895
1896 int snapshot_image_loaded(struct snapshot_handle *handle)
1897 {
1898         return !(!nr_copy_pages || !last_highmem_page_copied() ||
1899                         handle->cur <= nr_meta_pages + nr_copy_pages);
1900 }
1901
1902 #ifdef CONFIG_HIGHMEM
1903 /* Assumes that @buf is ready and points to a "safe" page */
1904 static inline void
1905 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
1906 {
1907         void *kaddr1, *kaddr2;
1908
1909         kaddr1 = kmap_atomic(p1, KM_USER0);
1910         kaddr2 = kmap_atomic(p2, KM_USER1);
1911         memcpy(buf, kaddr1, PAGE_SIZE);
1912         memcpy(kaddr1, kaddr2, PAGE_SIZE);
1913         memcpy(kaddr2, buf, PAGE_SIZE);
1914         kunmap_atomic(kaddr1, KM_USER0);
1915         kunmap_atomic(kaddr2, KM_USER1);
1916 }
1917
1918 /**
1919  *      restore_highmem - for each highmem page that was allocated before
1920  *      the suspend and included in the suspend image, and also has been
1921  *      allocated by the "resume" kernel swap its current (ie. "before
1922  *      resume") contents with the previous (ie. "before suspend") one.
1923  *
1924  *      If the resume eventually fails, we can call this function once
1925  *      again and restore the "before resume" highmem state.
1926  */
1927
1928 int restore_highmem(void)
1929 {
1930         struct highmem_pbe *pbe = highmem_pblist;
1931         void *buf;
1932
1933         if (!pbe)
1934                 return 0;
1935
1936         buf = get_image_page(GFP_ATOMIC, PG_SAFE);
1937         if (!buf)
1938                 return -ENOMEM;
1939
1940         while (pbe) {
1941                 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
1942                 pbe = pbe->next;
1943         }
1944         free_image_page(buf, PG_UNSAFE_CLEAR);
1945         return 0;
1946 }
1947 #endif /* CONFIG_HIGHMEM */