Merge remote-tracking branch 'sliedes/to-upstream' into dev-home
[simavr] / simavr / sim / sim_core.c
1 /*
2         sim_core.c
3
4         Copyright 2008, 2009 Michel Pollet <buserror@gmail.com>
5
6         This file is part of simavr.
7
8         simavr is free software: you can redistribute it and/or modify
9         it under the terms of the GNU General Public License as published by
10         the Free Software Foundation, either version 3 of the License, or
11         (at your option) any later version.
12
13         simavr is distributed in the hope that it will be useful,
14         but WITHOUT ANY WARRANTY; without even the implied warranty of
15         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16         GNU General Public License for more details.
17
18         You should have received a copy of the GNU General Public License
19         along with simavr.  If not, see <http://www.gnu.org/licenses/>.
20  */
21
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <string.h>
25 #include <ctype.h>
26 #include "sim_avr.h"
27 #include "sim_core.h"
28 #include "avr_flash.h"
29 #include "avr_watchdog.h"
30
31 // SREG bit names
32 const char * _sreg_bit_name = "cznvshti";
33
34 /*
35  * Handle "touching" registers, marking them changed.
36  * This is used only for debugging purposes to be able to
37  * print the effects of each instructions on registers
38  */
39 #if CONFIG_SIMAVR_TRACE
40
41 #define T(w) w
42
43 #define REG_TOUCH(a, r) (a)->trace_data->touched[(r) >> 5] |= (1 << ((r) & 0x1f))
44 #define REG_ISTOUCHED(a, r) ((a)->trace_data->touched[(r) >> 5] & (1 << ((r) & 0x1f)))
45
46 /*
47  * This allows a "special case" to skip indtruction tracing when in these
48  * symbols. since printf() is useful to have, but generates a lot of cycles
49  */
50 int dont_trace(const char * name)
51 {
52         return (
53                 !strcmp(name, "uart_putchar") ||
54                 !strcmp(name, "fputc") ||
55                 !strcmp(name, "printf") ||
56                 !strcmp(name, "vfprintf") ||
57                 !strcmp(name, "__ultoa_invert") ||
58                 !strcmp(name, "__prologue_saves__") ||
59                 !strcmp(name, "__epilogue_restores__"));
60 }
61
62 int donttrace = 0;
63
64 #define STATE(_f, args...) { \
65         if (avr->trace) {\
66                 if (avr->trace_data->codeline && avr->trace_data->codeline[avr->pc>>1]) {\
67                         const char * symn = avr->trace_data->codeline[avr->pc>>1]->symbol; \
68                         int dont = 0 && dont_trace(symn);\
69                         if (dont!=donttrace) { \
70                                 donttrace = dont;\
71                                 DUMP_REG();\
72                         }\
73                         if (donttrace==0)\
74                                 printf("%04x: %-25s " _f, avr->pc, symn, ## args);\
75                 } else \
76                         printf("%s: %04x: " _f, __FUNCTION__, avr->pc, ## args);\
77                 }\
78         }
79 #define SREG() if (avr->trace && donttrace == 0) {\
80         printf("%04x: \t\t\t\t\t\t\t\t\tSREG = ", avr->pc); \
81         for (int _sbi = 0; _sbi < 8; _sbi++)\
82                 printf("%c", avr->sreg[_sbi] ? toupper(_sreg_bit_name[_sbi]) : '.');\
83         printf("\n");\
84 }
85 #else
86 #define T(w)
87 #define REG_TOUCH(a, r)
88 #define STATE(_f, args...)
89 #define SREG()
90 #endif
91
92 void avr_core_watch_write(avr_t *avr, uint16_t addr, uint8_t v)
93 {
94         if (addr > avr->ramend) {
95                 printf("*** Invalid write address PC=%04x SP=%04x O=%04x Address %04x=%02x out of ram\n",
96                                 avr->pc, _avr_sp_get(avr), avr->flash[avr->pc] | (avr->flash[avr->pc]<<8), addr, v);
97                 CRASH();
98         }
99         if (addr < 32) {
100                 printf("*** Invalid write address PC=%04x SP=%04x O=%04x Address %04x=%02x low registers\n",
101                                 avr->pc, _avr_sp_get(avr), avr->flash[avr->pc] | (avr->flash[avr->pc]<<8), addr, v);
102                 CRASH();
103         }
104 #if AVR_STACK_WATCH
105         /*
106          * this checks that the current "function" is not doctoring the stack frame that is located
107          * higher on the stack than it should be. It's a sign of code that has overrun it's stack
108          * frame and is munching on it's own return address.
109          */
110         if (avr->trace_data->stack_frame_index > 1 && addr > avr->trace_data->stack_frame[avr->trace_data->stack_frame_index-2].sp) {
111                 printf("\e[31m%04x : munching stack SP %04x, A=%04x <= %02x\e[0m\n", avr->pc, _avr_sp_get(avr), addr, v);
112         }
113 #endif
114         avr->data[addr] = v;
115 }
116
117 uint8_t avr_core_watch_read(avr_t *avr, uint16_t addr)
118 {
119         if (addr > avr->ramend) {
120                 printf("*** Invalid read address PC=%04x SP=%04x O=%04x Address %04x out of ram (%04x)\n",
121                                 avr->pc, _avr_sp_get(avr), avr->flash[avr->pc] | (avr->flash[avr->pc]<<8), addr, avr->ramend);
122                 CRASH();
123         }
124         return avr->data[addr];
125 }
126
127 /*
128  * Set a register (r < 256)
129  * if it's an IO regisrer (> 31) also (try to) call any callback that was
130  * registered to track changes to that register.
131  */
132 static inline void _avr_set_r(avr_t * avr, uint8_t r, uint8_t v)
133 {
134         REG_TOUCH(avr, r);
135
136         if (r == R_SREG) {
137                 avr->data[R_SREG] = v;
138                 // unsplit the SREG
139                 for (int i = 0; i < 8; i++)
140                         avr->sreg[i] = (v & (1 << i)) != 0;
141                 SREG();
142         }
143         if (r > 31) {
144                 uint8_t io = AVR_DATA_TO_IO(r);
145                 if (avr->io[io].w.c)
146                         avr->io[io].w.c(avr, r, v, avr->io[io].w.param);
147                 else
148                         avr->data[r] = v;
149                 if (avr->io[io].irq) {
150                         avr_raise_irq(avr->io[io].irq + AVR_IOMEM_IRQ_ALL, v);
151                         for (int i = 0; i < 8; i++)
152                                 avr_raise_irq(avr->io[io].irq + i, (v >> i) & 1);                               
153                 }
154         } else
155                 avr->data[r] = v;
156 }
157
158 /*
159  * Stack pointer access
160  */
161 inline uint16_t _avr_sp_get(avr_t * avr)
162 {
163         return avr->data[R_SPL] | (avr->data[R_SPH] << 8);
164 }
165
166 inline void _avr_sp_set(avr_t * avr, uint16_t sp)
167 {
168         _avr_set_r(avr, R_SPL, sp);
169         _avr_set_r(avr, R_SPH, sp >> 8);
170 }
171
172 /*
173  * Set any address to a value; split between registers and SRAM
174  */
175 static inline void _avr_set_ram(avr_t * avr, uint16_t addr, uint8_t v)
176 {
177         if (addr < 256)
178                 _avr_set_r(avr, addr, v);
179         else
180                 avr_core_watch_write(avr, addr, v);
181 }
182
183 /*
184  * Get a value from SRAM.
185  */
186 static inline uint8_t _avr_get_ram(avr_t * avr, uint16_t addr)
187 {
188         if (addr == R_SREG) {
189                 /*
190                  * SREG is special it's reconstructed when read
191                  * while the core itself uses the "shortcut" array
192                  */
193                 avr->data[R_SREG] = 0;
194                 for (int i = 0; i < 8; i++)
195                         if (avr->sreg[i] > 1) {
196                                 printf("** Invalid SREG!!\n");
197                                 CRASH();
198                         } else if (avr->sreg[i])
199                                 avr->data[R_SREG] |= (1 << i);
200                 
201         } else if (addr > 31 && addr < 256) {
202                 uint8_t io = AVR_DATA_TO_IO(addr);
203                 
204                 if (avr->io[io].r.c)
205                         avr->data[addr] = avr->io[io].r.c(avr, addr, avr->io[io].r.param);
206                 
207                 if (avr->io[io].irq) {
208                         uint8_t v = avr->data[addr];
209                         avr_raise_irq(avr->io[io].irq + AVR_IOMEM_IRQ_ALL, v);
210                         for (int i = 0; i < 8; i++)
211                                 avr_raise_irq(avr->io[io].irq + i, (v >> i) & 1);                               
212                 }
213         }
214         return avr_core_watch_read(avr, addr);
215 }
216
217 /*
218  * Stack push accessors. Push/pop 8 and 16 bits
219  */
220 static inline void _avr_push8(avr_t * avr, uint16_t v)
221 {
222         uint16_t sp = _avr_sp_get(avr);
223         _avr_set_ram(avr, sp, v);
224         _avr_sp_set(avr, sp-1);
225 }
226
227 static inline uint8_t _avr_pop8(avr_t * avr)
228 {
229         uint16_t sp = _avr_sp_get(avr) + 1;
230         uint8_t res = _avr_get_ram(avr, sp);
231         _avr_sp_set(avr, sp);
232         return res;
233 }
234
235 inline void _avr_push16(avr_t * avr, uint16_t v)
236 {
237         _avr_push8(avr, v);
238         _avr_push8(avr, v >> 8);
239 }
240
241 static inline uint16_t _avr_pop16(avr_t * avr)
242 {
243         uint16_t res = _avr_pop8(avr) << 8;
244         res |= _avr_pop8(avr);
245         return res;
246 }
247
248 /*
249  * "Pretty" register names
250  */
251 const char * reg_names[255] = {
252                 [R_XH] = "XH", [R_XL] = "XL",
253                 [R_YH] = "YH", [R_YL] = "YL",
254                 [R_ZH] = "ZH", [R_ZL] = "ZL",
255                 [R_SPH] = "SPH", [R_SPL] = "SPL",
256                 [R_SREG] = "SREG",
257 };
258
259
260 const char * avr_regname(uint8_t reg)
261 {
262         if (!reg_names[reg]) {
263                 char tt[16];
264                 if (reg < 32)
265                         sprintf(tt, "r%d", reg);
266                 else
267                         sprintf(tt, "io:%02x", reg);
268                 reg_names[reg] = strdup(tt);
269         }
270         return reg_names[reg];
271 }
272
273 /*
274  * Called when an invalid opcode is decoded
275  */
276 static void _avr_invalid_opcode(avr_t * avr)
277 {
278 #if CONFIG_SIMAVR_TRACE
279         printf("\e[31m*** %04x: %-25s Invalid Opcode SP=%04x O=%04x \e[0m\n",
280                         avr->pc, avr->trace_data->codeline[avr->pc>>1]->symbol, _avr_sp_get(avr), avr->flash[avr->pc] | (avr->flash[avr->pc+1]<<8));
281 #else
282         printf("\e[31m*** %04x: Invalid Opcode SP=%04x O=%04x \e[0m\n",
283                         avr->pc, _avr_sp_get(avr), avr->flash[avr->pc] | (avr->flash[avr->pc+1]<<8));
284 #endif
285 }
286
287 #if CONFIG_SIMAVR_TRACE
288 /*
289  * Dump changed registers when tracing
290  */
291 void avr_dump_state(avr_t * avr)
292 {
293         if (!avr->trace || donttrace)
294                 return;
295
296         int doit = 0;
297
298         for (int r = 0; r < 3 && !doit; r++)
299                 if (avr->trace_data->touched[r])
300                         doit = 1;
301         if (!doit)
302                 return;
303         printf("                                       ->> ");
304         const int r16[] = { R_SPL, R_XL, R_YL, R_ZL };
305         for (int i = 0; i < 4; i++)
306                 if (REG_ISTOUCHED(avr, r16[i]) || REG_ISTOUCHED(avr, r16[i]+1)) {
307                         REG_TOUCH(avr, r16[i]);
308                         REG_TOUCH(avr, r16[i]+1);
309                 }
310
311         for (int i = 0; i < 3*32; i++)
312                 if (REG_ISTOUCHED(avr, i)) {
313                         printf("%s=%02x ", avr_regname(i), avr->data[i]);
314                 }
315         printf("\n");
316 }
317 #endif
318
319 #define get_r_d_10(o) \
320                 const uint8_t r = ((o >> 5) & 0x10) | (o & 0xf); \
321                 const uint8_t d = (o >> 4) & 0x1f;\
322                 const uint8_t vd = avr->data[d], vr = avr->data[r];
323 #define get_r_dd_10(o) \
324                 const uint8_t r = ((o >> 5) & 0x10) | (o & 0xf); \
325                 const uint8_t d = (o >> 4) & 0x1f;\
326                 const uint8_t vr = avr->data[r];
327 #define get_k_r16(o) \
328                 const uint8_t r = 16 + ((o >> 4) & 0xf); \
329                 const uint8_t k = ((o & 0x0f00) >> 4) | (o & 0xf);
330
331 /*
332  * Add a "jump" address to the jump trace buffer
333  */
334 #if CONFIG_SIMAVR_TRACE
335 #define TRACE_JUMP()\
336         avr->trace_data->old[avr->trace_data->old_pci].pc = avr->pc;\
337         avr->trace_data->old[avr->trace_data->old_pci].sp = _avr_sp_get(avr);\
338         avr->trace_data->old_pci = (avr->trace_data->old_pci + 1) & (OLD_PC_SIZE-1);\
339
340 #if AVR_STACK_WATCH
341 #define STACK_FRAME_PUSH()\
342         avr->trace_data->stack_frame[avr->trace_data->stack_frame_index].pc = avr->pc;\
343         avr->trace_data->stack_frame[avr->trace_data->stack_frame_index].sp = _avr_sp_get(avr);\
344         avr->trace_data->stack_frame_index++; 
345 #define STACK_FRAME_POP()\
346         if (avr->trace_data->stack_frame_index > 0) \
347                 avr->trace_data->stack_frame_index--;
348 #else
349 #define STACK_FRAME_PUSH()
350 #define STACK_FRAME_POP()
351 #endif
352 #else /* CONFIG_SIMAVR_TRACE */
353
354 #define TRACE_JUMP()
355 #define STACK_FRAME_PUSH()
356 #define STACK_FRAME_POP()
357
358 #endif
359
360 /****************************************************************************\
361  *
362  * Helper functions for calculating the status register bit values.
363  * See the Atmel data sheet for the instruction set for more info.
364  *
365 \****************************************************************************/
366
367 static uint8_t
368 get_add_carry (uint8_t res, uint8_t rd, uint8_t rr, int b)
369 {
370     uint8_t resb = res >> b & 0x1;
371     uint8_t rdb = rd >> b & 0x1;
372     uint8_t rrb = rr >> b & 0x1;
373     return (rdb & rrb) | (rrb & ~resb) | (~resb & rdb);
374 }
375
376 static  uint8_t
377 get_add_overflow (uint8_t res, uint8_t rd, uint8_t rr)
378 {
379     uint8_t res7 = res >> 7 & 0x1;
380     uint8_t rd7 = rd >> 7 & 0x1;
381     uint8_t rr7 = rr >> 7 & 0x1;
382     return (rd7 & rr7 & ~res7) | (~rd7 & ~rr7 & res7);
383 }
384
385 static  uint8_t
386 get_sub_carry (uint8_t res, uint8_t rd, uint8_t rr, int b)
387 {
388     uint8_t resb = res >> b & 0x1;
389     uint8_t rdb = rd >> b & 0x1;
390     uint8_t rrb = rr >> b & 0x1;
391     return (~rdb & rrb) | (rrb & resb) | (resb & ~rdb);
392 }
393
394 static  uint8_t
395 get_sub_overflow (uint8_t res, uint8_t rd, uint8_t rr)
396 {
397     uint8_t res7 = res >> 7 & 0x1;
398     uint8_t rd7 = rd >> 7 & 0x1;
399     uint8_t rr7 = rr >> 7 & 0x1;
400     return (rd7 & ~rr7 & ~res7) | (~rd7 & rr7 & res7);
401 }
402
403 static  uint8_t
404 get_compare_carry (uint8_t res, uint8_t rd, uint8_t rr, int b)
405 {
406     uint8_t resb = (res >> b) & 0x1;
407     uint8_t rdb = (rd >> b) & 0x1;
408     uint8_t rrb = (rr >> b) & 0x1;
409     return (~rdb & rrb) | (rrb & resb) | (resb & ~rdb);
410 }
411
412 static  uint8_t
413 get_compare_overflow (uint8_t res, uint8_t rd, uint8_t rr)
414 {
415     res >>= 7; rd >>= 7; rr >>= 7;
416     /* The atmel data sheet says the second term is ~rd7 for CP
417      * but that doesn't make any sense. You be the judge. */
418     return (rd & ~rr & ~res) | (~rd & rr & res);
419 }
420
421 static inline int _avr_is_instruction_32_bits(avr_t * avr, uint32_t pc)
422 {
423         uint16_t o = (avr->flash[pc] | (avr->flash[pc+1] << 8)) & 0xfc0f;
424         return  o == 0x9200 || // STS ! Store Direct to Data Space
425                         o == 0x9000 || // LDS Load Direct from Data Space
426                         o == 0x940c || // JMP Long Jump
427                         o == 0x940d || // JMP Long Jump
428                         o == 0x940e ||  // CALL Long Call to sub
429                         o == 0x940f; // CALL Long Call to sub
430 }
431
432 /*
433  * Main opcode decoder
434  * 
435  * The decoder was written by following the datasheet in no particular order.
436  * As I went along, I noticed "bit patterns" that could be used to factor opcodes
437  * However, a lot of these only became apparent later on, so SOME instructions
438  * (skip of bit set etc) are compact, and some could use some refactoring (the ALU
439  * ones scream to be factored).
440  * I assume that the decoder could easily be 2/3 of it's current size.
441  * 
442  * + It lacks the "extended" XMega jumps. 
443  * + It also doesn't check whether the core it's
444  *   emulating is supposed to have the fancy instructions, like multiply and such.
445  * 
446  * The nunber of cycles taken by instruction has been added, but might not be
447  * entirely accurate.
448  */
449 uint16_t avr_run_one(avr_t * avr)
450 {
451 #if CONFIG_SIMAVR_TRACE
452         /*
453          * this traces spurious reset or bad jumps
454          */
455         if ((avr->pc == 0 && avr->cycle > 0) || avr->pc >= avr->codeend) {
456                 avr->trace = 1;
457                 STATE("RESET\n");
458                 CRASH();
459         }
460         avr->trace_data->touched[0] = avr->trace_data->touched[1] = avr->trace_data->touched[2] = 0;
461 #endif
462
463         uint32_t        opcode = (avr->flash[avr->pc + 1] << 8) | avr->flash[avr->pc];
464         uint32_t        new_pc = avr->pc + 2;   // future "default" pc
465         int             cycle = 1;
466
467         switch (opcode & 0xf000) {
468                 case 0x0000: {
469                         switch (opcode) {
470                                 case 0x0000: {  // NOP
471                                         STATE("nop\n");
472                                 }       break;
473                                 default: {
474                                         switch (opcode & 0xfc00) {
475                                                 case 0x0400: {  // CPC compare with carry 0000 01rd dddd rrrr
476                                                         get_r_d_10(opcode);
477                                                         uint8_t res = vd - vr - avr->sreg[S_C];
478                                                         STATE("cpc %s[%02x], %s[%02x] = %02x\n", avr_regname(d), vd, avr_regname(r), vr, res);
479                                                         if (res)
480                                                                 avr->sreg[S_Z] = 0;
481                                                         avr->sreg[S_H] = get_compare_carry(res, vd, vr, 3);
482                                                         avr->sreg[S_V] = get_compare_overflow(res, vd, vr);
483                                                         avr->sreg[S_N] = (res >> 7) & 1;
484                                                         avr->sreg[S_C] = get_compare_carry(res, vd, vr, 7);
485                                                         avr->sreg[S_S] = avr->sreg[S_N] ^ avr->sreg[S_V];
486                                                         SREG();
487                                                 }       break;
488                                                 case 0x0c00: {  // ADD without carry 0000 11 rd dddd rrrr
489                                                         get_r_d_10(opcode);
490                                                         uint8_t res = vd + vr;
491                                                         if (r == d) {
492                                                                 STATE("lsl %s[%02x] = %02x\n", avr_regname(d), vd, res & 0xff);
493                                                         } else {
494                                                                 STATE("add %s[%02x], %s[%02x] = %02x\n", avr_regname(d), vd, avr_regname(r), vr, res);
495                                                         }
496                                                         _avr_set_r(avr, d, res);
497                                                         avr->sreg[S_Z] = res == 0;
498                                                         avr->sreg[S_H] = get_add_carry(res, vd, vr, 3);
499                                                         avr->sreg[S_V] = get_add_overflow(res, vd, vr);
500                                                         avr->sreg[S_N] = (res >> 7) & 1;
501                                                         avr->sreg[S_C] = get_add_carry(res, vd, vr, 7);
502                                                         avr->sreg[S_S] = avr->sreg[S_N] ^ avr->sreg[S_V];
503                                                         SREG();
504                                                 }       break;
505                                                 case 0x0800: {  // SBC subtract with carry 0000 10rd dddd rrrr
506                                                         get_r_d_10(opcode);
507                                                         uint8_t res = vd - vr - avr->sreg[S_C];
508                                                         STATE("sbc %s[%02x], %s[%02x] = %02x\n", avr_regname(d), avr->data[d], avr_regname(r), avr->data[r], res);
509                                                         _avr_set_r(avr, d, res);
510                                                         if (res)
511                                                                 avr->sreg[S_Z] = 0;
512                                                         avr->sreg[S_H] = get_sub_carry(res, vd, vr, 3);
513                                                         avr->sreg[S_V] = get_sub_overflow(res, vd, vr);
514                                                         avr->sreg[S_N] = (res >> 7) & 1;
515                                                         avr->sreg[S_C] = get_sub_carry(res, vd, vr, 7);
516                                                         avr->sreg[S_S] = avr->sreg[S_N] ^ avr->sreg[S_V];
517                                                         SREG();
518                                                 }       break;
519                                                 default:
520                                                         switch (opcode & 0xff00) {
521                                                                 case 0x0100: {  // MOVW – Copy Register Word 0000 0001 dddd rrrr
522                                                                         uint8_t d = ((opcode >> 4) & 0xf) << 1;
523                                                                         uint8_t r = ((opcode) & 0xf) << 1;
524                                                                         STATE("movw %s:%s, %s:%s[%02x%02x]\n", avr_regname(d), avr_regname(d+1), avr_regname(r), avr_regname(r+1), avr->data[r+1], avr->data[r]);
525                                                                         _avr_set_r(avr, d, avr->data[r]);
526                                                                         _avr_set_r(avr, d+1, avr->data[r+1]);
527                                                                 }       break;
528                                                                 case 0x0200: {  // MULS – Multiply Signed 0000 0010 dddd rrrr
529                                                                         int8_t r = 16 + (opcode & 0xf);
530                                                                         int8_t d = 16 + ((opcode >> 4) & 0xf);
531                                                                         int16_t res = ((int8_t)avr->data[r]) * ((int8_t)avr->data[d]);
532                                                                         STATE("muls %s[%d], %s[%02x] = %d\n", avr_regname(d), ((int8_t)avr->data[d]), avr_regname(r), ((int8_t)avr->data[r]), res);
533                                                                         _avr_set_r(avr, 0, res);
534                                                                         _avr_set_r(avr, 1, res >> 8);
535                                                                         avr->sreg[S_C] = (res >> 15) & 1;
536                                                                         avr->sreg[S_Z] = res == 0;
537                                                                         SREG();
538                                                                 }       break;
539                                                                 case 0x0300: {  // MUL Multiply 0000 0011 fddd frrr
540                                                                         int8_t r = 16 + (opcode & 0x7);
541                                                                         int8_t d = 16 + ((opcode >> 4) & 0x7);
542                                                                         int16_t res = 0;
543                                                                         uint8_t c = 0;
544                                                                         T(const char * name = "";)
545                                                                         switch (opcode & 0x88) {
546                                                                                 case 0x00:      // MULSU – Multiply Signed Unsigned 0000 0011 0ddd 0rrr
547                                                                                         res = ((uint8_t)avr->data[r]) * ((int8_t)avr->data[d]);
548                                                                                         c = (res >> 15) & 1;
549                                                                                         T(name = "mulsu";)
550                                                                                         break;
551                                                                                 case 0x08:      // FMUL Fractional Multiply Unsigned 0000 0011 0ddd 1rrr
552                                                                                         res = ((uint8_t)avr->data[r]) * ((uint8_t)avr->data[d]);
553                                                                                         c = (res >> 15) & 1;
554                                                                                         res <<= 1;
555                                                                                         T(name = "fmul";)
556                                                                                         break;
557                                                                                 case 0x80:      // FMULS – Multiply Signed  0000 0011 1ddd 0rrr
558                                                                                         res = ((int8_t)avr->data[r]) * ((int8_t)avr->data[d]);
559                                                                                         c = (res >> 15) & 1;
560                                                                                         res <<= 1;
561                                                                                         T(name = "fmuls";)
562                                                                                         break;
563                                                                                 case 0x88:      // FMULSU – Multiply Signed Unsigned 0000 0011 1ddd 1rrr
564                                                                                         res = ((uint8_t)avr->data[r]) * ((int8_t)avr->data[d]);
565                                                                                         c = (res >> 15) & 1;
566                                                                                         res <<= 1;
567                                                                                         T(name = "fmulsu";)
568                                                                                         break;
569                                                                         }
570                                                                         cycle++;
571                                                                         STATE("%s %s[%d], %s[%02x] = %d\n", name, avr_regname(d), ((int8_t)avr->data[d]), avr_regname(r), ((int8_t)avr->data[r]), res);
572                                                                         _avr_set_r(avr, 0, res);
573                                                                         _avr_set_r(avr, 1, res >> 8);
574                                                                         avr->sreg[S_C] = c;
575                                                                         avr->sreg[S_Z] = res == 0;
576                                                                         SREG();
577                                                                 }       break;
578                                                                 default: _avr_invalid_opcode(avr);
579                                                         }
580                                         }
581                                 }
582                         }
583                 }       break;
584
585                 case 0x1000: {
586                         switch (opcode & 0xfc00) {
587                                 case 0x1800: {  // SUB without carry 0000 10 rd dddd rrrr
588                                         get_r_d_10(opcode);
589                                         uint8_t res = vd - vr;
590                                         STATE("sub %s[%02x], %s[%02x] = %02x\n", avr_regname(d), vd, avr_regname(r), vr, res);
591                                         _avr_set_r(avr, d, res);
592                                         avr->sreg[S_Z] = res == 0;
593                                         avr->sreg[S_H] = get_sub_carry(res, vd, vr, 3);
594                                         avr->sreg[S_V] = get_sub_overflow(res, vd, vr);
595                                         avr->sreg[S_N] = (res >> 7) & 1;
596                                         avr->sreg[S_C] = get_sub_carry(res, vd, vr, 7);
597                                         avr->sreg[S_S] = avr->sreg[S_N] ^ avr->sreg[S_V];
598                                         SREG();
599                                 }       break;
600                                 case 0x1000: {  // CPSE Compare, skip if equal 0000 00 rd dddd rrrr
601                                         get_r_d_10(opcode);
602                                         uint16_t res = vd == vr;
603                                         STATE("cpse %s[%02x], %s[%02x]\t; Will%s skip\n", avr_regname(d), avr->data[d], avr_regname(r), avr->data[r], res ? "":" not");
604                                         if (res) {
605                                                 if (_avr_is_instruction_32_bits(avr, new_pc)) {
606                                                         new_pc += 4; cycle += 2;
607                                                 } else {
608                                                         new_pc += 2; cycle++;
609                                                 }
610                                         }
611                                 }       break;
612                                 case 0x1400: {  // CP Compare 0000 01 rd dddd rrrr
613                                         get_r_d_10(opcode);
614                                         uint8_t res = vd - vr;
615                                         STATE("cp %s[%02x], %s[%02x] = %02x\n", avr_regname(d), vd, avr_regname(r), vr, res);
616                                         avr->sreg[S_Z] = res == 0;
617                                         avr->sreg[S_H] = get_compare_carry(res, vd, vr, 3);
618                                         avr->sreg[S_V] = get_compare_overflow(res, vd, vr);
619                                         avr->sreg[S_N] = res >> 7;
620                                         avr->sreg[S_C] = get_compare_carry(res, vd, vr, 7);
621                                         avr->sreg[S_S] = avr->sreg[S_N] ^ avr->sreg[S_V];
622                                         SREG();
623                                 }       break;
624                                 case 0x1c00: {  // ADD with carry 0001 11 rd dddd rrrr
625                                         get_r_d_10(opcode);
626                                         uint8_t res = vd + vr + avr->sreg[S_C];
627                                         if (r == d) {
628                                                 STATE("rol %s[%02x] = %02x\n", avr_regname(d), avr->data[d], res);
629                                         } else {
630                                                 STATE("addc %s[%02x], %s[%02x] = %02x\n", avr_regname(d), avr->data[d], avr_regname(r), avr->data[r], res);
631                                         }
632                                         _avr_set_r(avr, d, res);
633                                         avr->sreg[S_Z] = res == 0;
634                                         avr->sreg[S_H] = get_add_carry(res, vd, vr, 3);
635                                         avr->sreg[S_V] = get_add_overflow(res, vd, vr);
636                                         avr->sreg[S_N] = (res >> 7) & 1;
637                                         avr->sreg[S_C] = get_add_carry(res, vd, vr, 7);
638                                         avr->sreg[S_S] = avr->sreg[S_N] ^ avr->sreg[S_V];
639                                         SREG();
640                                 }       break;
641                                 default: _avr_invalid_opcode(avr);
642                         }
643                 }       break;
644
645                 case 0x2000: {
646                         switch (opcode & 0xfc00) {
647                                 case 0x2000: {  // AND  0010 00rd dddd rrrr
648                                         get_r_d_10(opcode);
649                                         uint8_t res = vd & vr;
650                                         if (r == d) {
651                                                 STATE("tst %s[%02x]\n", avr_regname(d), avr->data[d]);
652                                         } else {
653                                                 STATE("and %s[%02x], %s[%02x] = %02x\n", avr_regname(d), vd, avr_regname(r), vr, res);
654                                         }
655                                         _avr_set_r(avr, d, res);
656                                         avr->sreg[S_Z] = res == 0;
657                                         avr->sreg[S_N] = (res >> 7) & 1;
658                                         avr->sreg[S_V] = 0;
659                                         avr->sreg[S_S] = avr->sreg[S_N] ^ avr->sreg[S_V];
660                                         SREG();
661                                 }       break;
662                                 case 0x2400: {  // EOR  0010 01rd dddd rrrr
663                                         get_r_d_10(opcode);
664                                         uint8_t res = vd ^ vr;
665                                         if (r==d) {
666                                                 STATE("clr %s[%02x]\n", avr_regname(d), avr->data[d]);
667                                         } else {
668                                                 STATE("eor %s[%02x], %s[%02x] = %02x\n", avr_regname(d), vd, avr_regname(r), vr, res);
669                                         }
670                                         _avr_set_r(avr, d, res);
671                                         avr->sreg[S_Z] = res == 0;
672                                         avr->sreg[S_N] = (res >> 7) & 1;
673                                         avr->sreg[S_V] = 0;
674                                         avr->sreg[S_S] = avr->sreg[S_N] ^ avr->sreg[S_V];
675                                         SREG();
676                                 }       break;
677                                 case 0x2800: {  // OR Logical OR        0010 10rd dddd rrrr
678                                         get_r_d_10(opcode);
679                                         uint8_t res = vd | vr;
680                                         STATE("or %s[%02x], %s[%02x] = %02x\n", avr_regname(d), vd, avr_regname(r), vr, res);
681                                         _avr_set_r(avr, d, res);
682                                         avr->sreg[S_Z] = res == 0;
683                                         avr->sreg[S_N] = (res >> 7) & 1;
684                                         avr->sreg[S_V] = 0;
685                                         avr->sreg[S_S] = avr->sreg[S_N] ^ avr->sreg[S_V];
686                                         SREG();
687                                 }       break;
688                                 case 0x2c00: {  // MOV  0010 11rd dddd rrrr
689                                         get_r_dd_10(opcode);
690                                         uint8_t res = vr;
691                                         STATE("mov %s, %s[%02x] = %02x\n", avr_regname(d), avr_regname(r), vr, res);
692                                         _avr_set_r(avr, d, res);
693                                 }       break;
694                                 default: _avr_invalid_opcode(avr);
695                         }
696                 }       break;
697
698                 case 0x3000: {  // CPI 0011 KKKK rrrr KKKK
699                         get_k_r16(opcode);
700                         uint8_t vr = avr->data[r];
701                         uint8_t res = vr - k;
702                         STATE("cpi %s[%02x], 0x%02x\n", avr_regname(r), vr, k);
703
704                         avr->sreg[S_Z] = res == 0;
705                         avr->sreg[S_H] = get_compare_carry(res, vr, k, 3);
706                         avr->sreg[S_V] = get_compare_overflow(res, vr, k);
707                         avr->sreg[S_N] = (res >> 7) & 1;
708                         avr->sreg[S_C] = get_compare_carry(res, vr, k, 7);
709                         avr->sreg[S_S] = avr->sreg[S_N] ^ avr->sreg[S_V];
710                         SREG();
711                 }       break;
712
713                 case 0x4000: {  // SBCI Subtract Immediate With Carry 0101 10 kkkk dddd kkkk
714                         get_k_r16(opcode);
715                         uint8_t vr = avr->data[r];
716                         uint8_t res = vr - k - avr->sreg[S_C];
717                         STATE("sbci %s[%02x], 0x%02x = %02x\n", avr_regname(r), avr->data[r], k, res);
718                         _avr_set_r(avr, r, res);
719                         if (res)
720                                 avr->sreg[S_Z] = 0;
721                         avr->sreg[S_N] = (res >> 7) & 1;
722                         avr->sreg[S_C] = (k + avr->sreg[S_C]) > vr;
723                         avr->sreg[S_S] = avr->sreg[S_N] ^ avr->sreg[S_V];
724                         SREG();
725                 }       break;
726
727                 case 0x5000: {  // SUB Subtract Immediate 0101 10 kkkk dddd kkkk
728                         get_k_r16(opcode);
729                         uint8_t vr = avr->data[r];
730                         uint8_t res = vr - k;
731                         STATE("subi %s[%02x], 0x%02x = %02x\n", avr_regname(r), avr->data[r], k, res);
732                         _avr_set_r(avr, r, res);
733                         avr->sreg[S_Z] = res  == 0;
734                         avr->sreg[S_N] = (res >> 7) & 1;
735                         avr->sreg[S_C] = k > vr;
736                         avr->sreg[S_S] = avr->sreg[S_N] ^ avr->sreg[S_V];
737                         SREG();
738                 }       break;
739
740                 case 0x6000: {  // ORI aka SBR  Logical AND with Immediate      0110 kkkk dddd kkkk
741                         get_k_r16(opcode);
742                         uint8_t res = avr->data[r] | k;
743                         STATE("ori %s[%02x], 0x%02x\n", avr_regname(r), avr->data[r], k);
744                         _avr_set_r(avr, r, res);
745                         avr->sreg[S_Z] = res == 0;
746                         avr->sreg[S_N] = (res >> 7) & 1;
747                         avr->sreg[S_V] = 0;
748                         avr->sreg[S_S] = avr->sreg[S_N] ^ avr->sreg[S_V];
749                         SREG();
750                 }       break;
751
752                 case 0x7000: {  // ANDI Logical AND with Immediate      0111 kkkk dddd kkkk
753                         get_k_r16(opcode);
754                         uint8_t res = avr->data[r] & k;
755                         STATE("andi %s[%02x], 0x%02x\n", avr_regname(r), avr->data[r], k);
756                         _avr_set_r(avr, r, res);
757                         avr->sreg[S_Z] = res == 0;
758                         avr->sreg[S_N] = (res >> 7) & 1;
759                         avr->sreg[S_V] = 0;
760                         avr->sreg[S_S] = avr->sreg[S_N] ^ avr->sreg[S_V];
761                         SREG();
762                 }       break;
763
764                 case 0xa000:
765                 case 0x8000: {
766                         switch (opcode & 0xd008) {
767                                 case 0xa000:
768                                 case 0x8000: {  // LD (LDD) – Load Indirect using Z 10q0 qq0r rrrr 0qqq
769                                         uint16_t v = avr->data[R_ZL] | (avr->data[R_ZH] << 8);
770                                         uint8_t r = (opcode >> 4) & 0x1f;
771                                         uint8_t q = ((opcode & 0x2000) >> 8) | ((opcode & 0x0c00) >> 7) | (opcode & 0x7);
772
773                                         if (opcode & 0x0200) {
774                                                 STATE("st (Z+%d[%04x]), %s[%02x]\n", q, v+q, avr_regname(r), avr->data[r]);
775                                                 _avr_set_ram(avr, v+q, avr->data[r]);
776                                         } else {
777                                                 STATE("ld %s, (Z+%d[%04x])=[%02x]\n", avr_regname(r), q, v+q, avr->data[v+q]);
778                                                 _avr_set_r(avr, r, _avr_get_ram(avr, v+q));
779                                         }
780                                         cycle += 1; // 2 cycles, 3 for tinyavr
781                                 }       break;
782                                 case 0xa008:
783                                 case 0x8008: {  // LD (LDD) – Load Indirect using Y 10q0 qq0r rrrr 1qqq
784                                         uint16_t v = avr->data[R_YL] | (avr->data[R_YH] << 8);
785                                         uint8_t r = (opcode >> 4) & 0x1f;
786                                         uint8_t q = ((opcode & 0x2000) >> 8) | ((opcode & 0x0c00) >> 7) | (opcode & 0x7);
787
788                                         if (opcode & 0x0200) {
789                                                 STATE("st (Y+%d[%04x]), %s[%02x]\n", q, v+q, avr_regname(r), avr->data[r]);
790                                                 _avr_set_ram(avr, v+q, avr->data[r]);
791                                         } else {
792                                                 STATE("ld %s, (Y+%d[%04x])=[%02x]\n", avr_regname(r), q, v+q, avr->data[v+q]);
793                                                 _avr_set_r(avr, r, _avr_get_ram(avr, v+q));
794                                         }
795                                         cycle += 1; // 2 cycles, 3 for tinyavr
796                                 }       break;
797                                 default: _avr_invalid_opcode(avr);
798                         }
799                 }       break;
800
801                 case 0x9000: {
802                         /* this is an annoying special case, but at least these lines handle all the SREG set/clear opcodes */
803                         if ((opcode & 0xff0f) == 0x9408) {
804                                 uint8_t b = (opcode >> 4) & 7;
805                                 STATE("%s%c\n", opcode & 0x0080 ? "cl" : "se", _sreg_bit_name[b]);
806                                 avr->sreg[b] = (opcode & 0x0080) == 0;
807                                 SREG();
808                         } else switch (opcode) {
809                                 case 0x9588: { // SLEEP
810                                         STATE("sleep\n");
811                                         avr->state = cpu_Sleeping;
812                                 }       break;
813                                 case 0x9598: { // BREAK
814                                         STATE("break\n");
815                                         if (avr->gdb) {
816                                                 // if gdb is on, we break here as in here
817                                                 // and we do so until gdb restores the instruction
818                                                 // that was here before
819                                                 avr->state = cpu_StepDone;
820                                                 new_pc = avr->pc;
821                                                 cycle = 0;
822                                         }
823                                 }       break;
824                                 case 0x95a8: { // WDR
825                                         STATE("wdr\n");
826                                         avr_ioctl(avr, AVR_IOCTL_WATCHDOG_RESET, 0);
827                                 }       break;
828                                 case 0x95e8: { // SPM
829                                         STATE("spm\n");
830                                         avr_ioctl(avr, AVR_IOCTL_FLASH_SPM, 0);
831                                 }       break;
832                                 case 0x9409:   // IJMP Indirect jump                                    1001 0100 0000 1001
833                                 case 0x9419:   // EIJMP Indirect jump                                   1001 0100 0001 1001   bit 4 is "indirect"
834                                 case 0x9509:   // ICALL Indirect Call to Subroutine             1001 0101 0000 1001
835                                 case 0x9519: { // EICALL Indirect Call to Subroutine    1001 0101 0001 1001   bit 8 is "push pc"
836                                         int e = opcode & 0x10;
837                                         int p = opcode & 0x100;
838                                         if (e && !avr->eind)
839                                                 _avr_invalid_opcode(avr);
840                                         uint16_t z = avr->data[R_ZL] | (avr->data[R_ZH] << 8);
841                                         if (e)
842                                                 z |= avr->data[avr->eind] << 16;
843                                         STATE("%si%s Z[%04x]\n", e?"e":"", p?"call":"jmp", z << 1);
844                                         if (p) {
845                                                 cycle++;
846                                                 _avr_push16(avr, new_pc >> 1);
847                                         }
848                                         new_pc = z << 1;
849                                         cycle++;
850                                         TRACE_JUMP();
851                                 }       break;
852                                 case 0x9518:    // RETI
853                                 case 0x9508: {  // RET
854                                         new_pc = _avr_pop16(avr) << 1;
855                                         if (opcode & 0x10)      // reti
856                                                 avr->sreg[S_I] = 1;
857                                         cycle += 3;
858                                         STATE("ret%s\n", opcode & 0x10 ? "i" : "");
859                                         TRACE_JUMP();
860                                         STACK_FRAME_POP();
861                                 }       break;
862                                 case 0x95c8: {  // LPM Load Program Memory R0 <- (Z)
863                                         uint16_t z = avr->data[R_ZL] | (avr->data[R_ZH] << 8);
864                                         STATE("lpm %s, (Z[%04x])\n", avr_regname(0), z);
865                                         cycle += 2; // 3 cycles
866                                         _avr_set_r(avr, 0, avr->flash[z]);
867                                 }       break;
868                                 case 0x9408:case 0x9418:case 0x9428:case 0x9438:case 0x9448:case 0x9458:case 0x9468:
869                                 case 0x9478:
870                                 {       // BSET 1001 0100 0ddd 1000
871                                         uint8_t b = (opcode >> 4) & 7;
872                                         avr->sreg[b] = 1;
873                                         STATE("bset %c\n", _sreg_bit_name[b]);
874                                         SREG();
875                                 }       break;
876                                 case 0x9488:case 0x9498:case 0x94a8:case 0x94b8:case 0x94c8:case 0x94d8:case 0x94e8:
877                                 case 0x94f8:    // bit 7 is 'clear vs set'
878                                 {       // BCLR 1001 0100 1ddd 1000
879                                         uint8_t b = (opcode >> 4) & 7;
880                                         avr->sreg[b] = 0;
881                                         STATE("bclr %c\n", _sreg_bit_name[b]);
882                                         SREG();
883                                 }       break;
884                                 default:  {
885                                         switch (opcode & 0xfe0f) {
886                                                 case 0x9000: {  // LDS Load Direct from Data Space, 32 bits
887                                                         uint8_t r = (opcode >> 4) & 0x1f;
888                                                         uint16_t x = (avr->flash[new_pc+1] << 8) | avr->flash[new_pc];
889                                                         new_pc += 2;
890                                                         STATE("lds %s[%02x], 0x%04x\n", avr_regname(r), avr->data[r], x);
891                                                         _avr_set_r(avr, r, _avr_get_ram(avr, x));
892                                                         cycle++; // 2 cycles
893                                                 }       break;
894                                                 case 0x9005:
895                                                 case 0x9004: {  // LPM Load Program Memory 1001 000d dddd 01oo
896                                                         uint16_t z = avr->data[R_ZL] | (avr->data[R_ZH] << 8);
897                                                         uint8_t r = (opcode >> 4) & 0x1f;
898                                                         int op = opcode & 3;
899                                                         STATE("lpm %s, (Z[%04x]%s)\n", avr_regname(r), z, opcode?"+":"");
900                                                         _avr_set_r(avr, r, avr->flash[z]);
901                                                         if (op == 1) {
902                                                                 z++;
903                                                                 _avr_set_r(avr, R_ZH, z >> 8);
904                                                                 _avr_set_r(avr, R_ZL, z);
905                                                         }
906                                                         cycle += 2; // 3 cycles
907                                                 }       break;
908                                                 case 0x9006:
909                                                 case 0x9007: {  // ELPM Extended Load Program Memory 1001 000d dddd 01oo
910                                                         if (!avr->rampz)
911                                                                 _avr_invalid_opcode(avr);
912                                                         uint16_t z = avr->data[R_ZL] | (avr->data[R_ZH] << 8) | (avr->data[avr->rampz] << 16);
913                                                         uint8_t r = (opcode >> 4) & 0x1f;
914                                                         int op = opcode & 3;
915                                                         STATE("elpm %s, (Z[%02x:%04x]%s)\n", avr_regname(r), z >> 16, z&0xffff, opcode?"+":"");
916                                                         _avr_set_r(avr, r, avr->flash[z]);
917                                                         if (op == 3) {
918                                                                 z++;
919                                                                 _avr_set_r(avr, avr->rampz, z >> 16);
920                                                                 _avr_set_r(avr, R_ZH, z >> 8);
921                                                                 _avr_set_r(avr, R_ZL, z);
922                                                         }
923                                                         cycle += 2; // 3 cycles
924                                                 }       break;
925                                                 /*
926                                                  * Load store instructions
927                                                  *
928                                                  * 1001 00sr rrrr iioo
929                                                  * s = 0 = load, 1 = store
930                                                  * ii = 16 bits register index, 11 = Z, 10 = Y, 00 = X
931                                                  * oo = 1) post increment, 2) pre-decrement
932                                                  */
933                                                 case 0x900c:
934                                                 case 0x900d:
935                                                 case 0x900e: {  // LD Load Indirect from Data using X 1001 000r rrrr 11oo
936                                                         int op = opcode & 3;
937                                                         uint8_t r = (opcode >> 4) & 0x1f;
938                                                         uint16_t x = (avr->data[R_XH] << 8) | avr->data[R_XL];
939                                                         STATE("ld %s, %sX[%04x]%s\n", avr_regname(r), op == 2 ? "--" : "", x, op == 1 ? "++" : "");
940                                                         cycle++; // 2 cycles (1 for tinyavr, except with inc/dec 2)
941                                                         if (op == 2) x--;
942                                                         _avr_set_r(avr, r, _avr_get_ram(avr, x));
943                                                         if (op == 1) x++;
944                                                         _avr_set_r(avr, R_XH, x >> 8);
945                                                         _avr_set_r(avr, R_XL, x);
946                                                 }       break;
947                                                 case 0x920c:
948                                                 case 0x920d:
949                                                 case 0x920e: {  // ST Store Indirect Data Space X 1001 001r rrrr 11oo
950                                                         int op = opcode & 3;
951                                                         uint8_t r = (opcode >> 4) & 0x1f;
952                                                         uint16_t x = (avr->data[R_XH] << 8) | avr->data[R_XL];
953                                                         STATE("st %sX[%04x]%s, %s[%02x] \n", op == 2 ? "--" : "", x, op == 1 ? "++" : "", avr_regname(r), avr->data[r]);
954                                                         cycle++; // 2 cycles, except tinyavr
955                                                         if (op == 2) x--;
956                                                         _avr_set_ram(avr, x, avr->data[r]);
957                                                         if (op == 1) x++;
958                                                         _avr_set_r(avr, R_XH, x >> 8);
959                                                         _avr_set_r(avr, R_XL, x);
960                                                 }       break;
961                                                 case 0x9009:
962                                                 case 0x900a: {  // LD Load Indirect from Data using Y 1001 000r rrrr 10oo
963                                                         int op = opcode & 3;
964                                                         uint8_t r = (opcode >> 4) & 0x1f;
965                                                         uint16_t y = (avr->data[R_YH] << 8) | avr->data[R_YL];
966                                                         STATE("ld %s, %sY[%04x]%s\n", avr_regname(r), op == 2 ? "--" : "", y, op == 1 ? "++" : "");
967                                                         cycle++; // 2 cycles, except tinyavr
968                                                         if (op == 2) y--;
969                                                         _avr_set_r(avr, r, _avr_get_ram(avr, y));
970                                                         if (op == 1) y++;
971                                                         _avr_set_r(avr, R_YH, y >> 8);
972                                                         _avr_set_r(avr, R_YL, y);
973                                                 }       break;
974                                                 case 0x9209:
975                                                 case 0x920a: {  // ST Store Indirect Data Space Y 1001 001r rrrr 10oo
976                                                         int op = opcode & 3;
977                                                         uint8_t r = (opcode >> 4) & 0x1f;
978                                                         uint16_t y = (avr->data[R_YH] << 8) | avr->data[R_YL];
979                                                         STATE("st %sY[%04x]%s, %s[%02x]\n", op == 2 ? "--" : "", y, op == 1 ? "++" : "", avr_regname(r), avr->data[r]);
980                                                         cycle++;
981                                                         if (op == 2) y--;
982                                                         _avr_set_ram(avr, y, avr->data[r]);
983                                                         if (op == 1) y++;
984                                                         _avr_set_r(avr, R_YH, y >> 8);
985                                                         _avr_set_r(avr, R_YL, y);
986                                                 }       break;
987                                                 case 0x9200: {  // STS ! Store Direct to Data Space, 32 bits
988                                                         uint8_t r = (opcode >> 4) & 0x1f;
989                                                         uint16_t x = (avr->flash[new_pc+1] << 8) | avr->flash[new_pc];
990                                                         new_pc += 2;
991                                                         STATE("sts 0x%04x, %s[%02x]\n", x, avr_regname(r), avr->data[r]);
992                                                         cycle++;
993                                                         _avr_set_ram(avr, x, avr->data[r]);
994                                                 }       break;
995                                                 case 0x9001:
996                                                 case 0x9002: {  // LD Load Indirect from Data using Z 1001 001r rrrr 00oo
997                                                         int op = opcode & 3;
998                                                         uint8_t r = (opcode >> 4) & 0x1f;
999                                                         uint16_t z = (avr->data[R_ZH] << 8) | avr->data[R_ZL];
1000                                                         STATE("ld %s, %sZ[%04x]%s\n", avr_regname(r), op == 2 ? "--" : "", z, op == 1 ? "++" : "");
1001                                                         cycle++;; // 2 cycles, except tinyavr
1002                                                         if (op == 2) z--;
1003                                                         _avr_set_r(avr, r, _avr_get_ram(avr, z));
1004                                                         if (op == 1) z++;
1005                                                         _avr_set_r(avr, R_ZH, z >> 8);
1006                                                         _avr_set_r(avr, R_ZL, z);
1007                                                 }       break;
1008                                                 case 0x9201:
1009                                                 case 0x9202: {  // ST Store Indirect Data Space Z 1001 001r rrrr 00oo
1010                                                         int op = opcode & 3;
1011                                                         uint8_t r = (opcode >> 4) & 0x1f;
1012                                                         uint16_t z = (avr->data[R_ZH] << 8) | avr->data[R_ZL];
1013                                                         STATE("st %sZ[%04x]%s, %s[%02x] \n", op == 2 ? "--" : "", z, op == 1 ? "++" : "", avr_regname(r), avr->data[r]);
1014                                                         cycle++; // 2 cycles, except tinyavr
1015                                                         if (op == 2) z--;
1016                                                         _avr_set_ram(avr, z, avr->data[r]);
1017                                                         if (op == 1) z++;
1018                                                         _avr_set_r(avr, R_ZH, z >> 8);
1019                                                         _avr_set_r(avr, R_ZL, z);
1020                                                 }       break;
1021                                                 case 0x900f: {  // POP 1001 000d dddd 1111
1022                                                         uint8_t r = (opcode >> 4) & 0x1f;
1023                                                         _avr_set_r(avr, r, _avr_pop8(avr));
1024                                                         T(uint16_t sp = _avr_sp_get(avr);)
1025                                                         STATE("pop %s (@%04x)[%02x]\n", avr_regname(r), sp, avr->data[sp]);
1026                                                         cycle++;
1027                                                 }       break;
1028                                                 case 0x920f: {  // PUSH 1001 001d dddd 1111
1029                                                         uint8_t r = (opcode >> 4) & 0x1f;
1030                                                         _avr_push8(avr, avr->data[r]);
1031                                                         T(uint16_t sp = _avr_sp_get(avr);)
1032                                                         STATE("push %s[%02x] (@%04x)\n", avr_regname(r), avr->data[r], sp);
1033                                                         cycle++;
1034                                                 }       break;
1035                                                 case 0x9400: {  // COM – One’s Complement
1036                                                         uint8_t r = (opcode >> 4) & 0x1f;
1037                                                         uint8_t res = 0xff - avr->data[r];
1038                                                         STATE("com %s[%02x] = %02x\n", avr_regname(r), avr->data[r], res);
1039                                                         _avr_set_r(avr, r, res);
1040                                                         avr->sreg[S_Z] = res == 0;
1041                                                         avr->sreg[S_N] = res >> 7;
1042                                                         avr->sreg[S_V] = 0;
1043                                                         avr->sreg[S_C] = 1;
1044                                                         avr->sreg[S_S] = avr->sreg[S_N] ^ avr->sreg[S_V];
1045                                                         SREG();
1046                                                 }       break;
1047                                                 case 0x9401: {  // NEG – Two’s Complement
1048                                                         uint8_t r = (opcode >> 4) & 0x1f;
1049                                                         uint8_t rd = avr->data[r];
1050                                                         uint8_t res = 0x00 - rd;
1051                                                         STATE("neg %s[%02x] = %02x\n", avr_regname(r), rd, res);
1052                                                         _avr_set_r(avr, r, res);
1053                                                         avr->sreg[S_H] = ((res >> 3) | (rd >> 3)) & 1;
1054                                                         avr->sreg[S_Z] = res == 0;
1055                                                         avr->sreg[S_N] = res >> 7;
1056                                                         avr->sreg[S_V] = res == 0x80;
1057                                                         avr->sreg[S_C] = res != 0;
1058                                                         avr->sreg[S_S] = avr->sreg[S_N] ^ avr->sreg[S_V];
1059                                                         SREG();
1060                                                 }       break;
1061                                                 case 0x9402: {  // SWAP – Swap Nibbles
1062                                                         uint8_t r = (opcode >> 4) & 0x1f;
1063                                                         uint8_t res = (avr->data[r] >> 4) | (avr->data[r] << 4) ;
1064                                                         STATE("swap %s[%02x] = %02x\n", avr_regname(r), avr->data[r], res);
1065                                                         _avr_set_r(avr, r, res);
1066                                                 }       break;
1067                                                 case 0x9403: {  // INC – Increment
1068                                                         uint8_t r = (opcode >> 4) & 0x1f;
1069                                                         uint8_t res = avr->data[r] + 1;
1070                                                         STATE("inc %s[%02x] = %02x\n", avr_regname(r), avr->data[r], res);
1071                                                         _avr_set_r(avr, r, res);
1072                                                         avr->sreg[S_Z] = res == 0;
1073                                                         avr->sreg[S_N] = res >> 7;
1074                                                         avr->sreg[S_V] = res == 0x7f;
1075                                                         avr->sreg[S_S] = avr->sreg[S_N] ^ avr->sreg[S_V];
1076                                                         SREG();
1077                                                 }       break;
1078                                                 case 0x9405: {  // ASR – Arithmetic Shift Right 1001 010d dddd 0101
1079                                                         uint8_t r = (opcode >> 4) & 0x1f;
1080                                                         uint8_t vr = avr->data[r];
1081                                                         uint8_t res = (vr >> 1) | (vr & 0x80);
1082                                                         STATE("asr %s[%02x]\n", avr_regname(r), vr);
1083                                                         _avr_set_r(avr, r, res);
1084                                                         avr->sreg[S_Z] = res == 0;
1085                                                         avr->sreg[S_C] = vr & 1;
1086                                                         avr->sreg[S_N] = res >> 7;
1087                                                         avr->sreg[S_V] = avr->sreg[S_N] ^ avr->sreg[S_C];
1088                                                         avr->sreg[S_S] = avr->sreg[S_N] ^ avr->sreg[S_V];
1089                                                         SREG();
1090                                                 }       break;
1091                                                 case 0x9406: {  // LSR 1001 010d dddd 0110
1092                                                         uint8_t r = (opcode >> 4) & 0x1f;
1093                                                         uint8_t vr = avr->data[r];
1094                                                         uint8_t res = vr >> 1;
1095                                                         STATE("lsr %s[%02x]\n", avr_regname(r), vr);
1096                                                         _avr_set_r(avr, r, res);
1097                                                         avr->sreg[S_Z] = res == 0;
1098                                                         avr->sreg[S_C] = vr & 1;
1099                                                         avr->sreg[S_N] = 0;
1100                                                         avr->sreg[S_V] = avr->sreg[S_N] ^ avr->sreg[S_C];
1101                                                         avr->sreg[S_S] = avr->sreg[S_N] ^ avr->sreg[S_V];
1102                                                         SREG();
1103                                                 }       break;
1104                                                 case 0x9407: {  // ROR 1001 010d dddd 0111
1105                                                         uint8_t r = (opcode >> 4) & 0x1f;
1106                                                         uint8_t vr = avr->data[r];
1107                                                         uint8_t res = (avr->sreg[S_C] ? 0x80 : 0) | vr >> 1;
1108                                                         STATE("ror %s[%02x]\n", avr_regname(r), vr);
1109                                                         _avr_set_r(avr, r, res);
1110                                                         avr->sreg[S_Z] = res == 0;
1111                                                         avr->sreg[S_C] = vr & 1;
1112                                                         avr->sreg[S_N] = 0;
1113                                                         avr->sreg[S_V] = avr->sreg[S_N] ^ avr->sreg[S_C];
1114                                                         avr->sreg[S_S] = avr->sreg[S_N] ^ avr->sreg[S_V];
1115                                                         SREG();
1116                                                 }       break;
1117                                                 case 0x940a: {  // DEC – Decrement
1118                                                         uint8_t r = (opcode >> 4) & 0x1f;
1119                                                         uint8_t res = avr->data[r] - 1;
1120                                                         STATE("dec %s[%02x] = %02x\n", avr_regname(r), avr->data[r], res);
1121                                                         _avr_set_r(avr, r, res);
1122                                                         avr->sreg[S_Z] = res == 0;
1123                                                         avr->sreg[S_N] = res >> 7;
1124                                                         avr->sreg[S_V] = res == 0x80;
1125                                                         avr->sreg[S_S] = avr->sreg[S_N] ^ avr->sreg[S_V];
1126                                                         SREG();
1127                                                 }       break;
1128                                                 case 0x940c:
1129                                                 case 0x940d: {  // JMP Long Call to sub, 32 bits
1130                                                         uint32_t a = ((opcode & 0x01f0) >> 3) | (opcode & 1);
1131                                                         uint16_t x = (avr->flash[new_pc+1] << 8) | avr->flash[new_pc];
1132                                                         a = (a << 16) | x;
1133                                                         STATE("jmp 0x%06x\n", a);
1134                                                         new_pc = a << 1;
1135                                                         cycle += 2;
1136                                                         TRACE_JUMP();
1137                                                 }       break;
1138                                                 case 0x940e:
1139                                                 case 0x940f: {  // CALL Long Call to sub, 32 bits
1140                                                         uint32_t a = ((opcode & 0x01f0) >> 3) | (opcode & 1);
1141                                                         uint16_t x = (avr->flash[new_pc+1] << 8) | avr->flash[new_pc];
1142                                                         a = (a << 16) | x;
1143                                                         STATE("call 0x%06x\n", a);
1144                                                         new_pc += 2;
1145                                                         _avr_push16(avr, new_pc >> 1);
1146                                                         new_pc = a << 1;
1147                                                         cycle += 3;     // 4 cycles; FIXME 5 on devices with 22 bit PC
1148                                                         TRACE_JUMP();
1149                                                         STACK_FRAME_PUSH();
1150                                                 }       break;
1151
1152                                                 default: {
1153                                                         switch (opcode & 0xff00) {
1154                                                                 case 0x9600: {  // ADIW - Add Immediate to Word 1001 0110 KKdd KKKK
1155                                                                         uint8_t r = 24 + ((opcode >> 3) & 0x6);
1156                                                                         uint8_t k = ((opcode & 0x00c0) >> 2) | (opcode & 0xf);
1157                                                                         uint8_t rdl = avr->data[r], rdh = avr->data[r+1];
1158                                                                         uint32_t res = rdl | (rdh << 8);
1159                                                                         STATE("adiw %s:%s[%04x], 0x%02x\n", avr_regname(r), avr_regname(r+1), res, k);
1160                                                                         res += k;
1161                                                                         _avr_set_r(avr, r + 1, res >> 8);
1162                                                                         _avr_set_r(avr, r, res);
1163                                                                         avr->sreg[S_V] = ~(rdh >> 7) & ((res >> 15) & 1);
1164                                                                         avr->sreg[S_Z] = (res & 0xffff) == 0;
1165                                                                         avr->sreg[S_N] = (res >> 15) & 1;
1166                                                                         avr->sreg[S_C] = ~((res >> 15) & 1) & (rdh >> 7);
1167                                                                         avr->sreg[S_S] = avr->sreg[S_N] ^ avr->sreg[S_V];
1168                                                                         SREG();
1169                                                                         cycle++;
1170                                                                 }       break;
1171                                                                 case 0x9700: {  // SBIW - Subtract Immediate from Word 1001 0110 KKdd KKKK
1172                                                                         uint8_t r = 24 + ((opcode >> 3) & 0x6);
1173                                                                         uint8_t k = ((opcode & 0x00c0) >> 2) | (opcode & 0xf);
1174                                                                         uint8_t rdl = avr->data[r], rdh = avr->data[r+1];
1175                                                                         uint32_t res = rdl | (rdh << 8);
1176                                                                         STATE("sbiw %s:%s[%04x], 0x%02x\n", avr_regname(r), avr_regname(r+1), res, k);
1177                                                                         res -= k;
1178                                                                         _avr_set_r(avr, r + 1, res >> 8);
1179                                                                         _avr_set_r(avr, r, res);
1180                                                                         avr->sreg[S_V] = (rdh >> 7) & (~(res >> 15) & 1);
1181                                                                         avr->sreg[S_Z] = (res & 0xffff) == 0;
1182                                                                         avr->sreg[S_N] = (res >> 15) & 1;
1183                                                                         avr->sreg[S_C] = ((res >> 15) & 1) & (~rdh >> 7);
1184                                                                         avr->sreg[S_S] = avr->sreg[S_N] ^ avr->sreg[S_V];
1185                                                                         SREG();
1186                                                                         cycle++;
1187                                                                 }       break;
1188                                                                 case 0x9800: {  // CBI - Clear Bit in I/O Register 1001 1000 AAAA Abbb
1189                                                                         uint8_t io = ((opcode >> 3) & 0x1f) + 32;
1190                                                                         uint8_t b = opcode & 0x7;
1191                                                                         uint8_t res = _avr_get_ram(avr, io) & ~(1 << b);
1192                                                                         STATE("cbi %s[%04x], 0x%02x = %02x\n", avr_regname(io), avr->data[io], 1<<b, res);
1193                                                                         _avr_set_ram(avr, io, res);
1194                                                                         cycle++;
1195                                                                 }       break;
1196                                                                 case 0x9900: {  // SBIC - Skip if Bit in I/O Register is Cleared 1001 0111 AAAA Abbb
1197                                                                         uint8_t io = ((opcode >> 3) & 0x1f) + 32;
1198                                                                         uint8_t b = opcode & 0x7;
1199                                                                         uint8_t res = _avr_get_ram(avr, io) & (1 << b);
1200                                                                         STATE("sbic %s[%04x], 0x%02x\t; Will%s branch\n", avr_regname(io), avr->data[io], 1<<b, !res?"":" not");
1201                                                                         if (!res) {
1202                                                                                 if (_avr_is_instruction_32_bits(avr, new_pc)) {
1203                                                                                         new_pc += 4; cycle += 2;
1204                                                                                 } else {
1205                                                                                         new_pc += 2; cycle++;
1206                                                                                 }
1207                                                                         }
1208                                                                 }       break;
1209                                                                 case 0x9a00: {  // SBI - Set Bit in I/O Register 1001 1000 AAAA Abbb
1210                                                                         uint8_t io = ((opcode >> 3) & 0x1f) + 32;
1211                                                                         uint8_t b = opcode & 0x7;
1212                                                                         uint8_t res = _avr_get_ram(avr, io) | (1 << b);
1213                                                                         STATE("sbi %s[%04x], 0x%02x = %02x\n", avr_regname(io), avr->data[io], 1<<b, res);
1214                                                                         _avr_set_ram(avr, io, res);
1215                                                                         cycle++;
1216                                                                 }       break;
1217                                                                 case 0x9b00: {  // SBIS - Skip if Bit in I/O Register is Set 1001 1011 AAAA Abbb
1218                                                                         uint8_t io = ((opcode >> 3) & 0x1f) + 32;
1219                                                                         uint8_t b = opcode & 0x7;
1220                                                                         uint8_t res = _avr_get_ram(avr, io) & (1 << b);
1221                                                                         STATE("sbis %s[%04x], 0x%02x\t; Will%s branch\n", avr_regname(io), avr->data[io], 1<<b, res?"":" not");
1222                                                                         if (res) {
1223                                                                                 if (_avr_is_instruction_32_bits(avr, new_pc)) {
1224                                                                                         new_pc += 4; cycle += 2;
1225                                                                                 } else {
1226                                                                                         new_pc += 2; cycle++;
1227                                                                                 }
1228                                                                         }
1229                                                                 }       break;
1230                                                                 default:
1231                                                                         switch (opcode & 0xfc00) {
1232                                                                                 case 0x9c00: {  // MUL - Multiply Unsigned 1001 11rd dddd rrrr
1233                                                                                         get_r_d_10(opcode);
1234                                                                                         uint16_t res = vd * vr;
1235                                                                                         STATE("mul %s[%02x], %s[%02x] = %04x\n", avr_regname(d), vd, avr_regname(r), vr, res);
1236                                                                                         cycle++;
1237                                                                                         _avr_set_r(avr, 0, res);
1238                                                                                         _avr_set_r(avr, 1, res >> 8);
1239                                                                                         avr->sreg[S_Z] = res == 0;
1240                                                                                         avr->sreg[S_C] = (res >> 15) & 1;
1241                                                                                         SREG();
1242                                                                                 }       break;
1243                                                                                 default: _avr_invalid_opcode(avr);
1244                                                                         }
1245                                                         }
1246                                                 }       break;
1247                                         }
1248                                 }       break;
1249                         }
1250                 }       break;
1251
1252                 case 0xb000: {
1253                         switch (opcode & 0xf800) {
1254                                 case 0xb800: {  // OUT A,Rr 1011 1AAr rrrr AAAA
1255                                         uint8_t r = (opcode >> 4) & 0x1f;
1256                                         uint8_t A = ((((opcode >> 9) & 3) << 4) | ((opcode) & 0xf)) + 32;
1257                                         STATE("out %s, %s[%02x]\n", avr_regname(A), avr_regname(r), avr->data[r]);
1258                                         _avr_set_ram(avr, A, avr->data[r]);
1259                                 }       break;
1260                                 case 0xb000: {  // IN Rd,A 1011 0AAr rrrr AAAA
1261                                         uint8_t r = (opcode >> 4) & 0x1f;
1262                                         uint8_t A = ((((opcode >> 9) & 3) << 4) | ((opcode) & 0xf)) + 32;
1263                                         STATE("in %s, %s[%02x]\n", avr_regname(r), avr_regname(A), avr->data[A]);
1264                                         _avr_set_r(avr, r, _avr_get_ram(avr, A));
1265                                 }       break;
1266                                 default: _avr_invalid_opcode(avr);
1267                         }
1268                 }       break;
1269
1270                 case 0xc000: {
1271                         // RJMP 1100 kkkk kkkk kkkk
1272                         short o = ((short)(opcode << 4)) >> 4;
1273                         STATE("rjmp .%d [%04x]\n", o, new_pc + (o << 1));
1274                         new_pc = new_pc + (o << 1);
1275                         cycle++;
1276                         TRACE_JUMP();
1277                 }       break;
1278
1279                 case 0xd000: {
1280                         // RCALL 1100 kkkk kkkk kkkk
1281                         short o = ((short)(opcode << 4)) >> 4;
1282                         STATE("rcall .%d [%04x]\n", o, new_pc + (o << 1));
1283                         _avr_push16(avr, new_pc >> 1);
1284                         new_pc = new_pc + (o << 1);
1285                         cycle += 2;
1286                         // 'rcall .1' is used as a cheap "push 16 bits of room on the stack"
1287                         if (o != 0) {
1288                                 TRACE_JUMP();
1289                                 STACK_FRAME_PUSH();
1290                         }
1291                 }       break;
1292
1293                 case 0xe000: {  // LDI Rd, K 1110 KKKK RRRR KKKK -- aka SER (LDI r, 0xff)
1294                         uint8_t d = 16 + ((opcode >> 4) & 0xf);
1295                         uint8_t k = ((opcode & 0x0f00) >> 4) | (opcode & 0xf);
1296                         STATE("ldi %s, 0x%02x\n", avr_regname(d), k);
1297                         _avr_set_r(avr, d, k);
1298                 }       break;
1299
1300                 case 0xf000: {
1301                         switch (opcode & 0xfe00) {
1302                                 case 0xf000:
1303                                 case 0xf200:
1304                                 case 0xf400:
1305                                 case 0xf600: {  // All the SREG branches
1306                                         short o = ((short)(opcode << 6)) >> 9; // offset
1307                                         uint8_t s = opcode & 7;
1308                                         int set = (opcode & 0x0400) == 0;               // this bit means BRXC otherwise BRXS
1309                                         int branch = (avr->sreg[s] && set) || (!avr->sreg[s] && !set);
1310                                         const char *names[2][8] = {
1311                                                         { "brcc", "brne", "brpl", "brvc", NULL, "brhc", "brtc", "brid"},
1312                                                         { "brcs", "breq", "brmi", "brvs", NULL, "brhs", "brts", "brie"},
1313                                         };
1314                                         if (names[set][s]) {
1315                                                 STATE("%s .%d [%04x]\t; Will%s branch\n", names[set][s], o, new_pc + (o << 1), branch ? "":" not");
1316                                         } else {
1317                                                 STATE("%s%c .%d [%04x]\t; Will%s branch\n", set ? "brbs" : "brbc", _sreg_bit_name[s], o, new_pc + (o << 1), branch ? "":" not");
1318                                         }
1319                                         if (branch) {
1320                                                 cycle++; // 2 cycles if taken, 1 otherwise
1321                                                 new_pc = new_pc + (o << 1);
1322                                         }
1323                                 }       break;
1324                                 case 0xf800:
1325                                 case 0xf900: {  // BLD – Bit Store from T into a Bit in Register 1111 100r rrrr 0bbb
1326                                         uint8_t r = (opcode >> 4) & 0x1f; // register index
1327                                         uint8_t s = opcode & 7;
1328                                         uint8_t v = avr->data[r] | (avr->sreg[S_T] ? (1 << s) : 0);
1329                                         STATE("bld %s[%02x], 0x%02x = %02x\n", avr_regname(r), avr->data[r], 1 << s, v);
1330                                         _avr_set_r(avr, r, v);
1331                                 }       break;
1332                                 case 0xfa00:
1333                                 case 0xfb00:{   // BST – Bit Store into T from bit in Register 1111 100r rrrr 0bbb
1334                                         uint8_t r = (opcode >> 4) & 0x1f; // register index
1335                                         uint8_t s = opcode & 7;
1336                                         STATE("bst %s[%02x], 0x%02x\n", avr_regname(r), avr->data[r], 1 << s);
1337                                         avr->sreg[S_T] = (avr->data[r] >> s) & 1;
1338                                         SREG();
1339                                 }       break;
1340                                 case 0xfc00:
1341                                 case 0xfe00: {  // SBRS/SBRC – Skip if Bit in Register is Set/Clear 1111 11sr rrrr 0bbb
1342                                         uint8_t r = (opcode >> 4) & 0x1f; // register index
1343                                         uint8_t s = opcode & 7;
1344                                         int set = (opcode & 0x0200) != 0;
1345                                         int branch = ((avr->data[r] & (1 << s)) && set) || (!(avr->data[r] & (1 << s)) && !set);
1346                                         STATE("%s %s[%02x], 0x%02x\t; Will%s branch\n", set ? "sbrs" : "sbrc", avr_regname(r), avr->data[r], 1 << s, branch ? "":" not");
1347                                         if (branch) {
1348                                                 if (_avr_is_instruction_32_bits(avr, new_pc)) {
1349                                                         new_pc += 4; cycle += 2;
1350                                                 } else {
1351                                                         new_pc += 2; cycle++;
1352                                                 }
1353                                         }
1354                                 }       break;
1355                                 default: _avr_invalid_opcode(avr);
1356                         }
1357                 }       break;
1358
1359                 default: _avr_invalid_opcode(avr);
1360
1361         }
1362         avr->cycle += cycle;
1363         return new_pc;
1364 }
1365
1366