# BRCM_VERSION=3
[bcm963xx.git] / kernel / linux / net / ipv4 / tcp_minisocks.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:     $Id: tcp_minisocks.c,v 1.1.1.1 2005/04/29 01:44:10 echo Exp $
9  *
10  * Authors:     Ross Biro, <bir7@leland.Stanford.Edu>
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *              Florian La Roche, <flla@stud.uni-sb.de>
15  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *              Matthew Dillon, <dillon@apollo.west.oic.com>
19  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *              Jorge Cwik, <jorge@laser.satlink.net>
21  */
22
23 #include <linux/config.h>
24 #include <linux/mm.h>
25 #include <linux/module.h>
26 #include <linux/sysctl.h>
27 #include <linux/workqueue.h>
28 #include <net/tcp.h>
29 #include <net/inet_common.h>
30 #include <net/xfrm.h>
31
32 #ifdef CONFIG_SYSCTL
33 #define SYNC_INIT 0 /* let the user enable it */
34 #else
35 #define SYNC_INIT 1
36 #endif
37
38 int sysctl_tcp_tw_recycle;
39 int sysctl_tcp_max_tw_buckets = NR_FILE*2;
40
41 int sysctl_tcp_syncookies = SYNC_INIT; 
42 int sysctl_tcp_abort_on_overflow;
43
44 static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
45 {
46         if (seq == s_win)
47                 return 1;
48         if (after(end_seq, s_win) && before(seq, e_win))
49                 return 1;
50         return (seq == e_win && seq == end_seq);
51 }
52
53 /* New-style handling of TIME_WAIT sockets. */
54
55 int tcp_tw_count;
56
57
58 /* Must be called with locally disabled BHs. */
59 static void tcp_timewait_kill(struct tcp_tw_bucket *tw)
60 {
61         struct tcp_ehash_bucket *ehead;
62         struct tcp_bind_hashbucket *bhead;
63         struct tcp_bind_bucket *tb;
64
65         /* Unlink from established hashes. */
66         ehead = &tcp_ehash[tw->tw_hashent];
67         write_lock(&ehead->lock);
68         if (hlist_unhashed(&tw->tw_node)) {
69                 write_unlock(&ehead->lock);
70                 return;
71         }
72         __hlist_del(&tw->tw_node);
73         sk_node_init(&tw->tw_node);
74         write_unlock(&ehead->lock);
75
76         /* Disassociate with bind bucket. */
77         bhead = &tcp_bhash[tcp_bhashfn(tw->tw_num)];
78         spin_lock(&bhead->lock);
79         tb = tw->tw_tb;
80         __hlist_del(&tw->tw_bind_node);
81         tw->tw_tb = NULL;
82         tcp_bucket_destroy(tb);
83         spin_unlock(&bhead->lock);
84
85 #ifdef INET_REFCNT_DEBUG
86         if (atomic_read(&tw->tw_refcnt) != 1) {
87                 printk(KERN_DEBUG "tw_bucket %p refcnt=%d\n", tw,
88                        atomic_read(&tw->tw_refcnt));
89         }
90 #endif
91         tcp_tw_put(tw);
92 }
93
94 /* 
95  * * Main purpose of TIME-WAIT state is to close connection gracefully,
96  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
97  *   (and, probably, tail of data) and one or more our ACKs are lost.
98  * * What is TIME-WAIT timeout? It is associated with maximal packet
99  *   lifetime in the internet, which results in wrong conclusion, that
100  *   it is set to catch "old duplicate segments" wandering out of their path.
101  *   It is not quite correct. This timeout is calculated so that it exceeds
102  *   maximal retransmission timeout enough to allow to lose one (or more)
103  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
104  * * When TIME-WAIT socket receives RST, it means that another end
105  *   finally closed and we are allowed to kill TIME-WAIT too.
106  * * Second purpose of TIME-WAIT is catching old duplicate segments.
107  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
108  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
109  * * If we invented some more clever way to catch duplicates
110  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
111  *
112  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
113  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
114  * from the very beginning.
115  *
116  * NOTE. With recycling (and later with fin-wait-2) TW bucket
117  * is _not_ stateless. It means, that strictly speaking we must
118  * spinlock it. I do not want! Well, probability of misbehaviour
119  * is ridiculously low and, seems, we could use some mb() tricks
120  * to avoid misread sequence numbers, states etc.  --ANK
121  */
122 enum tcp_tw_status
123 tcp_timewait_state_process(struct tcp_tw_bucket *tw, struct sk_buff *skb,
124                            struct tcphdr *th, unsigned len)
125 {
126         struct tcp_opt tp;
127         int paws_reject = 0;
128
129         tp.saw_tstamp = 0;
130         if (th->doff > (sizeof(struct tcphdr) >> 2) && tw->tw_ts_recent_stamp) {
131                 tcp_parse_options(skb, &tp, 0);
132
133                 if (tp.saw_tstamp) {
134                         tp.ts_recent       = tw->tw_ts_recent;
135                         tp.ts_recent_stamp = tw->tw_ts_recent_stamp;
136                         paws_reject = tcp_paws_check(&tp, th->rst);
137                 }
138         }
139
140         if (tw->tw_substate == TCP_FIN_WAIT2) {
141                 /* Just repeat all the checks of tcp_rcv_state_process() */
142
143                 /* Out of window, send ACK */
144                 if (paws_reject ||
145                     !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
146                                    tw->tw_rcv_nxt,
147                                    tw->tw_rcv_nxt + tw->tw_rcv_wnd))
148                         return TCP_TW_ACK;
149
150                 if (th->rst)
151                         goto kill;
152
153                 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tw->tw_rcv_nxt))
154                         goto kill_with_rst;
155
156                 /* Dup ACK? */
157                 if (!after(TCP_SKB_CB(skb)->end_seq, tw->tw_rcv_nxt) ||
158                     TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
159                         tcp_tw_put(tw);
160                         return TCP_TW_SUCCESS;
161                 }
162
163                 /* New data or FIN. If new data arrive after half-duplex close,
164                  * reset.
165                  */
166                 if (!th->fin ||
167                     TCP_SKB_CB(skb)->end_seq != tw->tw_rcv_nxt + 1) {
168 kill_with_rst:
169                         tcp_tw_deschedule(tw);
170                         tcp_tw_put(tw);
171                         return TCP_TW_RST;
172                 }
173
174                 /* FIN arrived, enter true time-wait state. */
175                 tw->tw_substate = TCP_TIME_WAIT;
176                 tw->tw_rcv_nxt  = TCP_SKB_CB(skb)->end_seq;
177                 if (tp.saw_tstamp) {
178                         tw->tw_ts_recent_stamp  = xtime.tv_sec;
179                         tw->tw_ts_recent        = tp.rcv_tsval;
180                 }
181
182                 /* I am shamed, but failed to make it more elegant.
183                  * Yes, it is direct reference to IP, which is impossible
184                  * to generalize to IPv6. Taking into account that IPv6
185                  * do not undertsnad recycling in any case, it not
186                  * a big problem in practice. --ANK */
187                 if (tw->tw_family == AF_INET &&
188                     sysctl_tcp_tw_recycle && tw->tw_ts_recent_stamp &&
189                     tcp_v4_tw_remember_stamp(tw))
190                         tcp_tw_schedule(tw, tw->tw_timeout);
191                 else
192                         tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);
193                 return TCP_TW_ACK;
194         }
195
196         /*
197          *      Now real TIME-WAIT state.
198          *
199          *      RFC 1122:
200          *      "When a connection is [...] on TIME-WAIT state [...]
201          *      [a TCP] MAY accept a new SYN from the remote TCP to
202          *      reopen the connection directly, if it:
203          *      
204          *      (1)  assigns its initial sequence number for the new
205          *      connection to be larger than the largest sequence
206          *      number it used on the previous connection incarnation,
207          *      and
208          *
209          *      (2)  returns to TIME-WAIT state if the SYN turns out 
210          *      to be an old duplicate".
211          */
212
213         if (!paws_reject &&
214             (TCP_SKB_CB(skb)->seq == tw->tw_rcv_nxt &&
215              (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
216                 /* In window segment, it may be only reset or bare ack. */
217
218                 if (th->rst) {
219                         /* This is TIME_WAIT assasination, in two flavors.
220                          * Oh well... nobody has a sufficient solution to this
221                          * protocol bug yet.
222                          */
223                         if (sysctl_tcp_rfc1337 == 0) {
224 kill:
225                                 tcp_tw_deschedule(tw);
226                                 tcp_tw_put(tw);
227                                 return TCP_TW_SUCCESS;
228                         }
229                 }
230                 tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);
231
232                 if (tp.saw_tstamp) {
233                         tw->tw_ts_recent        = tp.rcv_tsval;
234                         tw->tw_ts_recent_stamp  = xtime.tv_sec;
235                 }
236
237                 tcp_tw_put(tw);
238                 return TCP_TW_SUCCESS;
239         }
240
241         /* Out of window segment.
242
243            All the segments are ACKed immediately.
244
245            The only exception is new SYN. We accept it, if it is
246            not old duplicate and we are not in danger to be killed
247            by delayed old duplicates. RFC check is that it has
248            newer sequence number works at rates <40Mbit/sec.
249            However, if paws works, it is reliable AND even more,
250            we even may relax silly seq space cutoff.
251
252            RED-PEN: we violate main RFC requirement, if this SYN will appear
253            old duplicate (i.e. we receive RST in reply to SYN-ACK),
254            we must return socket to time-wait state. It is not good,
255            but not fatal yet.
256          */
257
258         if (th->syn && !th->rst && !th->ack && !paws_reject &&
259             (after(TCP_SKB_CB(skb)->seq, tw->tw_rcv_nxt) ||
260              (tp.saw_tstamp && (s32)(tw->tw_ts_recent - tp.rcv_tsval) < 0))) {
261                 u32 isn = tw->tw_snd_nxt + 65535 + 2;
262                 if (isn == 0)
263                         isn++;
264                 TCP_SKB_CB(skb)->when = isn;
265                 return TCP_TW_SYN;
266         }
267
268         if (paws_reject)
269                 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
270
271         if(!th->rst) {
272                 /* In this case we must reset the TIMEWAIT timer.
273                  *
274                  * If it is ACKless SYN it may be both old duplicate
275                  * and new good SYN with random sequence number <rcv_nxt.
276                  * Do not reschedule in the last case.
277                  */
278                 if (paws_reject || th->ack)
279                         tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);
280
281                 /* Send ACK. Note, we do not put the bucket,
282                  * it will be released by caller.
283                  */
284                 return TCP_TW_ACK;
285         }
286         tcp_tw_put(tw);
287         return TCP_TW_SUCCESS;
288 }
289
290 /* Enter the time wait state.  This is called with locally disabled BH.
291  * Essentially we whip up a timewait bucket, copy the
292  * relevant info into it from the SK, and mess with hash chains
293  * and list linkage.
294  */
295 static void __tcp_tw_hashdance(struct sock *sk, struct tcp_tw_bucket *tw)
296 {
297         struct tcp_ehash_bucket *ehead = &tcp_ehash[sk->sk_hashent];
298         struct tcp_bind_hashbucket *bhead;
299
300         /* Step 1: Put TW into bind hash. Original socket stays there too.
301            Note, that any socket with inet_sk(sk)->num != 0 MUST be bound in
302            binding cache, even if it is closed.
303          */
304         bhead = &tcp_bhash[tcp_bhashfn(inet_sk(sk)->num)];
305         spin_lock(&bhead->lock);
306         tw->tw_tb = tcp_sk(sk)->bind_hash;
307         BUG_TRAP(tcp_sk(sk)->bind_hash);
308         tw_add_bind_node(tw, &tw->tw_tb->owners);
309         spin_unlock(&bhead->lock);
310
311         write_lock(&ehead->lock);
312
313         /* Step 2: Remove SK from established hash. */
314         if (__sk_del_node_init(sk))
315                 sock_prot_dec_use(sk->sk_prot);
316
317         /* Step 3: Hash TW into TIMEWAIT half of established hash table. */
318         tw_add_node(tw, &(ehead + tcp_ehash_size)->chain);
319         atomic_inc(&tw->tw_refcnt);
320
321         write_unlock(&ehead->lock);
322 }
323
324 /* 
325  * Move a socket to time-wait or dead fin-wait-2 state.
326  */ 
327 void tcp_time_wait(struct sock *sk, int state, int timeo)
328 {
329         struct tcp_tw_bucket *tw = NULL;
330         struct tcp_opt *tp = tcp_sk(sk);
331         int recycle_ok = 0;
332
333         if (sysctl_tcp_tw_recycle && tp->ts_recent_stamp)
334                 recycle_ok = tp->af_specific->remember_stamp(sk);
335
336         if (tcp_tw_count < sysctl_tcp_max_tw_buckets)
337                 tw = kmem_cache_alloc(tcp_timewait_cachep, SLAB_ATOMIC);
338
339         if(tw != NULL) {
340                 struct inet_opt *inet = inet_sk(sk);
341                 int rto = (tp->rto<<2) - (tp->rto>>1);
342
343                 /* Give us an identity. */
344                 tw->tw_daddr            = inet->daddr;
345                 tw->tw_rcv_saddr        = inet->rcv_saddr;
346                 tw->tw_bound_dev_if     = sk->sk_bound_dev_if;
347                 tw->tw_num              = inet->num;
348                 tw->tw_state            = TCP_TIME_WAIT;
349                 tw->tw_substate         = state;
350                 tw->tw_sport            = inet->sport;
351                 tw->tw_dport            = inet->dport;
352                 tw->tw_family           = sk->sk_family;
353                 tw->tw_reuse            = sk->sk_reuse;
354                 tw->tw_rcv_wscale       = tp->rcv_wscale;
355                 atomic_set(&tw->tw_refcnt, 1);
356
357                 tw->tw_hashent          = sk->sk_hashent;
358                 tw->tw_rcv_nxt          = tp->rcv_nxt;
359                 tw->tw_snd_nxt          = tp->snd_nxt;
360                 tw->tw_rcv_wnd          = tcp_receive_window(tp);
361                 tw->tw_ts_recent        = tp->ts_recent;
362                 tw->tw_ts_recent_stamp  = tp->ts_recent_stamp;
363                 tw_dead_node_init(tw);
364
365 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
366                 if (tw->tw_family == PF_INET6) {
367                         struct ipv6_pinfo *np = inet6_sk(sk);
368
369                         ipv6_addr_copy(&tw->tw_v6_daddr, &np->daddr);
370                         ipv6_addr_copy(&tw->tw_v6_rcv_saddr, &np->rcv_saddr);
371                         tw->tw_v6_ipv6only = np->ipv6only;
372                 } else {
373                         memset(&tw->tw_v6_daddr, 0, sizeof(tw->tw_v6_daddr));
374                         memset(&tw->tw_v6_rcv_saddr, 0, sizeof(tw->tw_v6_rcv_saddr));
375                         tw->tw_v6_ipv6only = 0;
376                 }
377 #endif
378                 /* Linkage updates. */
379                 __tcp_tw_hashdance(sk, tw);
380
381                 /* Get the TIME_WAIT timeout firing. */
382                 if (timeo < rto)
383                         timeo = rto;
384
385                 if (recycle_ok) {
386                         tw->tw_timeout = rto;
387                 } else {
388                         tw->tw_timeout = TCP_TIMEWAIT_LEN;
389                         if (state == TCP_TIME_WAIT)
390                                 timeo = TCP_TIMEWAIT_LEN;
391                 }
392
393                 tcp_tw_schedule(tw, timeo);
394                 tcp_tw_put(tw);
395         } else {
396                 /* Sorry, if we're out of memory, just CLOSE this
397                  * socket up.  We've got bigger problems than
398                  * non-graceful socket closings.
399                  */
400                 if (net_ratelimit())
401                         printk(KERN_INFO "TCP: time wait bucket table overflow\n");
402         }
403
404         tcp_update_metrics(sk);
405         tcp_done(sk);
406 }
407
408 /* Kill off TIME_WAIT sockets once their lifetime has expired. */
409 static int tcp_tw_death_row_slot;
410
411 static void tcp_twkill(unsigned long);
412
413 /* TIME_WAIT reaping mechanism. */
414 #define TCP_TWKILL_SLOTS        8       /* Please keep this a power of 2. */
415 #define TCP_TWKILL_PERIOD       (TCP_TIMEWAIT_LEN/TCP_TWKILL_SLOTS)
416
417 #define TCP_TWKILL_QUOTA        100
418
419 static struct hlist_head tcp_tw_death_row[TCP_TWKILL_SLOTS];
420 static spinlock_t tw_death_lock = SPIN_LOCK_UNLOCKED;
421 static struct timer_list tcp_tw_timer = TIMER_INITIALIZER(tcp_twkill, 0, 0);
422 static void twkill_work(void *);
423 static DECLARE_WORK(tcp_twkill_work, twkill_work, NULL);
424 static u32 twkill_thread_slots;
425
426 /* Returns non-zero if quota exceeded.  */
427 static int tcp_do_twkill_work(int slot, unsigned int quota)
428 {
429         struct tcp_tw_bucket *tw;
430         struct hlist_node *node;
431         unsigned int killed;
432         int ret;
433
434         /* NOTE: compare this to previous version where lock
435          * was released after detaching chain. It was racy,
436          * because tw buckets are scheduled in not serialized context
437          * in 2.3 (with netfilter), and with softnet it is common, because
438          * soft irqs are not sequenced.
439          */
440         killed = 0;
441         ret = 0;
442 rescan:
443         tw_for_each_inmate(tw, node, &tcp_tw_death_row[slot]) {
444                 __tw_del_dead_node(tw);
445                 spin_unlock(&tw_death_lock);
446                 tcp_timewait_kill(tw);
447                 tcp_tw_put(tw);
448                 killed++;
449                 spin_lock(&tw_death_lock);
450                 if (killed > quota) {
451                         ret = 1;
452                         break;
453                 }
454
455                 /* While we dropped tw_death_lock, another cpu may have
456                  * killed off the next TW bucket in the list, therefore
457                  * do a fresh re-read of the hlist head node with the
458                  * lock reacquired.  We still use the hlist traversal
459                  * macro in order to get the prefetches.
460                  */
461                 goto rescan;
462         }
463
464         tcp_tw_count -= killed;
465         NET_ADD_STATS_BH(LINUX_MIB_TIMEWAITED, killed);
466
467         return ret;
468 }
469
470 static void tcp_twkill(unsigned long dummy)
471 {
472         int need_timer, ret;
473
474         spin_lock(&tw_death_lock);
475
476         if (tcp_tw_count == 0)
477                 goto out;
478
479         need_timer = 0;
480         ret = tcp_do_twkill_work(tcp_tw_death_row_slot, TCP_TWKILL_QUOTA);
481         if (ret) {
482                 twkill_thread_slots |= (1 << tcp_tw_death_row_slot);
483                 mb();
484                 schedule_work(&tcp_twkill_work);
485                 need_timer = 1;
486         } else {
487                 /* We purged the entire slot, anything left?  */
488                 if (tcp_tw_count)
489                         need_timer = 1;
490         }
491         tcp_tw_death_row_slot =
492                 ((tcp_tw_death_row_slot + 1) & (TCP_TWKILL_SLOTS - 1));
493         if (need_timer)
494                 mod_timer(&tcp_tw_timer, jiffies + TCP_TWKILL_PERIOD);
495 out:
496         spin_unlock(&tw_death_lock);
497 }
498
499 extern void twkill_slots_invalid(void);
500
501 static void twkill_work(void *dummy)
502 {
503         int i;
504
505         if ((TCP_TWKILL_SLOTS - 1) > (sizeof(twkill_thread_slots) * 8))
506                 twkill_slots_invalid();
507
508         while (twkill_thread_slots) {
509                 spin_lock_bh(&tw_death_lock);
510                 for (i = 0; i < TCP_TWKILL_SLOTS; i++) {
511                         if (!(twkill_thread_slots & (1 << i)))
512                                 continue;
513
514                         while (tcp_do_twkill_work(i, TCP_TWKILL_QUOTA) != 0) {
515                                 if (need_resched()) {
516                                         spin_unlock_bh(&tw_death_lock);
517                                         schedule();
518                                         spin_lock_bh(&tw_death_lock);
519                                 }
520                         }
521
522                         twkill_thread_slots &= ~(1 << i);
523                 }
524                 spin_unlock_bh(&tw_death_lock);
525         }
526 }
527
528 /* These are always called from BH context.  See callers in
529  * tcp_input.c to verify this.
530  */
531
532 /* This is for handling early-kills of TIME_WAIT sockets. */
533 void tcp_tw_deschedule(struct tcp_tw_bucket *tw)
534 {
535         spin_lock(&tw_death_lock);
536         if (tw_del_dead_node(tw)) {
537                 tcp_tw_put(tw);
538                 if (--tcp_tw_count == 0)
539                         del_timer(&tcp_tw_timer);
540         }
541         spin_unlock(&tw_death_lock);
542         tcp_timewait_kill(tw);
543 }
544
545 /* Short-time timewait calendar */
546
547 static int tcp_twcal_hand = -1;
548 static int tcp_twcal_jiffie;
549 static void tcp_twcal_tick(unsigned long);
550 static struct timer_list tcp_twcal_timer =
551                 TIMER_INITIALIZER(tcp_twcal_tick, 0, 0);
552 static struct hlist_head tcp_twcal_row[TCP_TW_RECYCLE_SLOTS];
553
554 void tcp_tw_schedule(struct tcp_tw_bucket *tw, int timeo)
555 {
556         struct hlist_head *list;
557         int slot;
558
559         /* timeout := RTO * 3.5
560          *
561          * 3.5 = 1+2+0.5 to wait for two retransmits.
562          *
563          * RATIONALE: if FIN arrived and we entered TIME-WAIT state,
564          * our ACK acking that FIN can be lost. If N subsequent retransmitted
565          * FINs (or previous seqments) are lost (probability of such event
566          * is p^(N+1), where p is probability to lose single packet and
567          * time to detect the loss is about RTO*(2^N - 1) with exponential
568          * backoff). Normal timewait length is calculated so, that we
569          * waited at least for one retransmitted FIN (maximal RTO is 120sec).
570          * [ BTW Linux. following BSD, violates this requirement waiting
571          *   only for 60sec, we should wait at least for 240 secs.
572          *   Well, 240 consumes too much of resources 8)
573          * ]
574          * This interval is not reduced to catch old duplicate and
575          * responces to our wandering segments living for two MSLs.
576          * However, if we use PAWS to detect
577          * old duplicates, we can reduce the interval to bounds required
578          * by RTO, rather than MSL. So, if peer understands PAWS, we
579          * kill tw bucket after 3.5*RTO (it is important that this number
580          * is greater than TS tick!) and detect old duplicates with help
581          * of PAWS.
582          */
583         slot = (timeo + (1<<TCP_TW_RECYCLE_TICK) - 1) >> TCP_TW_RECYCLE_TICK;
584
585         spin_lock(&tw_death_lock);
586
587         /* Unlink it, if it was scheduled */
588         if (tw_del_dead_node(tw))
589                 tcp_tw_count--;
590         else
591                 atomic_inc(&tw->tw_refcnt);
592
593         if (slot >= TCP_TW_RECYCLE_SLOTS) {
594                 /* Schedule to slow timer */
595                 if (timeo >= TCP_TIMEWAIT_LEN) {
596                         slot = TCP_TWKILL_SLOTS-1;
597                 } else {
598                         slot = (timeo + TCP_TWKILL_PERIOD-1) / TCP_TWKILL_PERIOD;
599                         if (slot >= TCP_TWKILL_SLOTS)
600                                 slot = TCP_TWKILL_SLOTS-1;
601                 }
602                 tw->tw_ttd = jiffies + timeo;
603                 slot = (tcp_tw_death_row_slot + slot) & (TCP_TWKILL_SLOTS - 1);
604                 list = &tcp_tw_death_row[slot];
605         } else {
606                 tw->tw_ttd = jiffies + (slot << TCP_TW_RECYCLE_TICK);
607
608                 if (tcp_twcal_hand < 0) {
609                         tcp_twcal_hand = 0;
610                         tcp_twcal_jiffie = jiffies;
611                         tcp_twcal_timer.expires = tcp_twcal_jiffie + (slot<<TCP_TW_RECYCLE_TICK);
612                         add_timer(&tcp_twcal_timer);
613                 } else {
614                         if (time_after(tcp_twcal_timer.expires, jiffies + (slot<<TCP_TW_RECYCLE_TICK)))
615                                 mod_timer(&tcp_twcal_timer, jiffies + (slot<<TCP_TW_RECYCLE_TICK));
616                         slot = (tcp_twcal_hand + slot)&(TCP_TW_RECYCLE_SLOTS-1);
617                 }
618                 list = &tcp_twcal_row[slot];
619         }
620
621         hlist_add_head(&tw->tw_death_node, list);
622
623         if (tcp_tw_count++ == 0)
624                 mod_timer(&tcp_tw_timer, jiffies+TCP_TWKILL_PERIOD);
625         spin_unlock(&tw_death_lock);
626 }
627
628 void tcp_twcal_tick(unsigned long dummy)
629 {
630         int n, slot;
631         unsigned long j;
632         unsigned long now = jiffies;
633         int killed = 0;
634         int adv = 0;
635
636         spin_lock(&tw_death_lock);
637         if (tcp_twcal_hand < 0)
638                 goto out;
639
640         slot = tcp_twcal_hand;
641         j = tcp_twcal_jiffie;
642
643         for (n=0; n<TCP_TW_RECYCLE_SLOTS; n++) {
644                 if (time_before_eq(j, now)) {
645                         struct hlist_node *node, *safe;
646                         struct tcp_tw_bucket *tw;
647
648                         tw_for_each_inmate_safe(tw, node, safe,
649                                            &tcp_twcal_row[slot]) {
650                                 __tw_del_dead_node(tw);
651                                 tcp_timewait_kill(tw);
652                                 tcp_tw_put(tw);
653                                 killed++;
654                         }
655                 } else {
656                         if (!adv) {
657                                 adv = 1;
658                                 tcp_twcal_jiffie = j;
659                                 tcp_twcal_hand = slot;
660                         }
661
662                         if (!hlist_empty(&tcp_twcal_row[slot])) {
663                                 mod_timer(&tcp_twcal_timer, j);
664                                 goto out;
665                         }
666                 }
667                 j += (1<<TCP_TW_RECYCLE_TICK);
668                 slot = (slot+1)&(TCP_TW_RECYCLE_SLOTS-1);
669         }
670         tcp_twcal_hand = -1;
671
672 out:
673         if ((tcp_tw_count -= killed) == 0)
674                 del_timer(&tcp_tw_timer);
675         NET_ADD_STATS_BH(LINUX_MIB_TIMEWAITKILLED, killed);
676         spin_unlock(&tw_death_lock);
677 }
678
679 /* This is not only more efficient than what we used to do, it eliminates
680  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
681  *
682  * Actually, we could lots of memory writes here. tp of listening
683  * socket contains all necessary default parameters.
684  */
685 struct sock *tcp_create_openreq_child(struct sock *sk, struct open_request *req, struct sk_buff *skb)
686 {
687         /* allocate the newsk from the same slab of the master sock,
688          * if not, at sk_free time we'll try to free it from the wrong
689          * slabcache (i.e. is it TCPv4 or v6?) -acme */
690         struct sock *newsk = sk_alloc(PF_INET, GFP_ATOMIC, 0, sk->sk_slab);
691
692         if(newsk != NULL) {
693                 struct tcp_opt *newtp;
694                 struct sk_filter *filter;
695
696                 memcpy(newsk, sk, sizeof(struct tcp_sock));
697                 newsk->sk_state = TCP_SYN_RECV;
698
699                 /* SANITY */
700                 sk_node_init(&newsk->sk_node);
701                 tcp_sk(newsk)->bind_hash = NULL;
702
703                 /* Clone the TCP header template */
704                 inet_sk(newsk)->dport = req->rmt_port;
705
706                 sock_lock_init(newsk);
707                 bh_lock_sock(newsk);
708
709                 newsk->sk_dst_lock = RW_LOCK_UNLOCKED;
710                 atomic_set(&newsk->sk_rmem_alloc, 0);
711                 skb_queue_head_init(&newsk->sk_receive_queue);
712                 atomic_set(&newsk->sk_wmem_alloc, 0);
713                 skb_queue_head_init(&newsk->sk_write_queue);
714                 atomic_set(&newsk->sk_omem_alloc, 0);
715                 newsk->sk_wmem_queued = 0;
716                 newsk->sk_forward_alloc = 0;
717
718                 sock_reset_flag(newsk, SOCK_DONE);
719                 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
720                 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
721                 newsk->sk_send_head = NULL;
722                 newsk->sk_callback_lock = RW_LOCK_UNLOCKED;
723                 skb_queue_head_init(&newsk->sk_error_queue);
724                 newsk->sk_write_space = sk_stream_write_space;
725
726                 if ((filter = newsk->sk_filter) != NULL)
727                         sk_filter_charge(newsk, filter);
728
729                 if (unlikely(xfrm_sk_clone_policy(newsk))) {
730                         /* It is still raw copy of parent, so invalidate
731                          * destructor and make plain sk_free() */
732                         newsk->sk_destruct = NULL;
733                         sk_free(newsk);
734                         return NULL;
735                 }
736
737                 /* Now setup tcp_opt */
738                 newtp = tcp_sk(newsk);
739                 newtp->pred_flags = 0;
740                 newtp->rcv_nxt = req->rcv_isn + 1;
741                 newtp->snd_nxt = req->snt_isn + 1;
742                 newtp->snd_una = req->snt_isn + 1;
743                 newtp->snd_sml = req->snt_isn + 1;
744
745                 tcp_prequeue_init(newtp);
746
747                 tcp_init_wl(newtp, req->snt_isn, req->rcv_isn);
748
749                 newtp->retransmits = 0;
750                 newtp->backoff = 0;
751                 newtp->srtt = 0;
752                 newtp->mdev = TCP_TIMEOUT_INIT;
753                 newtp->rto = TCP_TIMEOUT_INIT;
754
755                 newtp->packets_out = 0;
756                 newtp->left_out = 0;
757                 newtp->retrans_out = 0;
758                 newtp->sacked_out = 0;
759                 newtp->fackets_out = 0;
760                 newtp->snd_ssthresh = 0x7fffffff;
761
762                 /* So many TCP implementations out there (incorrectly) count the
763                  * initial SYN frame in their delayed-ACK and congestion control
764                  * algorithms that we must have the following bandaid to talk
765                  * efficiently to them.  -DaveM
766                  */
767                 newtp->snd_cwnd = 2;
768                 newtp->snd_cwnd_cnt = 0;
769
770                 newtp->frto_counter = 0;
771                 newtp->frto_highmark = 0;
772
773                 tcp_set_ca_state(newtp, TCP_CA_Open);
774                 tcp_init_xmit_timers(newsk);
775                 skb_queue_head_init(&newtp->out_of_order_queue);
776                 newtp->rcv_wup = req->rcv_isn + 1;
777                 newtp->write_seq = req->snt_isn + 1;
778                 newtp->pushed_seq = newtp->write_seq;
779                 newtp->copied_seq = req->rcv_isn + 1;
780
781                 newtp->saw_tstamp = 0;
782
783                 newtp->dsack = 0;
784                 newtp->eff_sacks = 0;
785
786                 newtp->probes_out = 0;
787                 newtp->num_sacks = 0;
788                 newtp->urg_data = 0;
789                 newtp->listen_opt = NULL;
790                 newtp->accept_queue = newtp->accept_queue_tail = NULL;
791                 /* Deinitialize syn_wait_lock to trap illegal accesses. */
792                 memset(&newtp->syn_wait_lock, 0, sizeof(newtp->syn_wait_lock));
793
794                 /* Back to base struct sock members. */
795                 newsk->sk_err = 0;
796                 newsk->sk_priority = 0;
797                 atomic_set(&newsk->sk_refcnt, 2);
798 #ifdef INET_REFCNT_DEBUG
799                 atomic_inc(&inet_sock_nr);
800 #endif
801                 atomic_inc(&tcp_sockets_allocated);
802
803                 if (sock_flag(newsk, SOCK_KEEPOPEN))
804                         tcp_reset_keepalive_timer(newsk,
805                                                   keepalive_time_when(newtp));
806                 newsk->sk_socket = NULL;
807                 newsk->sk_sleep = NULL;
808                 newsk->sk_owner = NULL;
809
810                 newtp->tstamp_ok = req->tstamp_ok;
811                 if((newtp->sack_ok = req->sack_ok) != 0) {
812                         if (sysctl_tcp_fack)
813                                 newtp->sack_ok |= 2;
814                 }
815                 newtp->window_clamp = req->window_clamp;
816                 newtp->rcv_ssthresh = req->rcv_wnd;
817                 newtp->rcv_wnd = req->rcv_wnd;
818                 newtp->wscale_ok = req->wscale_ok;
819                 if (newtp->wscale_ok) {
820                         newtp->snd_wscale = req->snd_wscale;
821                         newtp->rcv_wscale = req->rcv_wscale;
822                 } else {
823                         newtp->snd_wscale = newtp->rcv_wscale = 0;
824                         newtp->window_clamp = min(newtp->window_clamp, 65535U);
825                 }
826                 newtp->snd_wnd = ntohs(skb->h.th->window) << newtp->snd_wscale;
827                 newtp->max_window = newtp->snd_wnd;
828
829                 if (newtp->tstamp_ok) {
830                         newtp->ts_recent = req->ts_recent;
831                         newtp->ts_recent_stamp = xtime.tv_sec;
832                         newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
833                 } else {
834                         newtp->ts_recent_stamp = 0;
835                         newtp->tcp_header_len = sizeof(struct tcphdr);
836                 }
837                 if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len)
838                         newtp->ack.last_seg_size = skb->len-newtp->tcp_header_len;
839                 newtp->mss_clamp = req->mss;
840                 TCP_ECN_openreq_child(newtp, req);
841                 if (newtp->ecn_flags&TCP_ECN_OK)
842                         newsk->sk_no_largesend = 1;
843
844                 tcp_vegas_init(newtp);
845                 TCP_INC_STATS_BH(TCP_MIB_PASSIVEOPENS);
846         }
847         return newsk;
848 }
849
850 /* 
851  *      Process an incoming packet for SYN_RECV sockets represented
852  *      as an open_request.
853  */
854
855 struct sock *tcp_check_req(struct sock *sk,struct sk_buff *skb,
856                            struct open_request *req,
857                            struct open_request **prev)
858 {
859         struct tcphdr *th = skb->h.th;
860         struct tcp_opt *tp = tcp_sk(sk);
861         u32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
862         int paws_reject = 0;
863         struct tcp_opt ttp;
864         struct sock *child;
865
866         ttp.saw_tstamp = 0;
867         if (th->doff > (sizeof(struct tcphdr)>>2)) {
868                 tcp_parse_options(skb, &ttp, 0);
869
870                 if (ttp.saw_tstamp) {
871                         ttp.ts_recent = req->ts_recent;
872                         /* We do not store true stamp, but it is not required,
873                          * it can be estimated (approximately)
874                          * from another data.
875                          */
876                         ttp.ts_recent_stamp = xtime.tv_sec - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
877                         paws_reject = tcp_paws_check(&ttp, th->rst);
878                 }
879         }
880
881         /* Check for pure retransmitted SYN. */
882         if (TCP_SKB_CB(skb)->seq == req->rcv_isn &&
883             flg == TCP_FLAG_SYN &&
884             !paws_reject) {
885                 /*
886                  * RFC793 draws (Incorrectly! It was fixed in RFC1122)
887                  * this case on figure 6 and figure 8, but formal
888                  * protocol description says NOTHING.
889                  * To be more exact, it says that we should send ACK,
890                  * because this segment (at least, if it has no data)
891                  * is out of window.
892                  *
893                  *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
894                  *  describe SYN-RECV state. All the description
895                  *  is wrong, we cannot believe to it and should
896                  *  rely only on common sense and implementation
897                  *  experience.
898                  *
899                  * Enforce "SYN-ACK" according to figure 8, figure 6
900                  * of RFC793, fixed by RFC1122.
901                  */
902                 req->class->rtx_syn_ack(sk, req, NULL);
903                 return NULL;
904         }
905
906         /* Further reproduces section "SEGMENT ARRIVES"
907            for state SYN-RECEIVED of RFC793.
908            It is broken, however, it does not work only
909            when SYNs are crossed.
910
911            You would think that SYN crossing is impossible here, since
912            we should have a SYN_SENT socket (from connect()) on our end,
913            but this is not true if the crossed SYNs were sent to both
914            ends by a malicious third party.  We must defend against this,
915            and to do that we first verify the ACK (as per RFC793, page
916            36) and reset if it is invalid.  Is this a true full defense?
917            To convince ourselves, let us consider a way in which the ACK
918            test can still pass in this 'malicious crossed SYNs' case.
919            Malicious sender sends identical SYNs (and thus identical sequence
920            numbers) to both A and B:
921
922                 A: gets SYN, seq=7
923                 B: gets SYN, seq=7
924
925            By our good fortune, both A and B select the same initial
926            send sequence number of seven :-)
927
928                 A: sends SYN|ACK, seq=7, ack_seq=8
929                 B: sends SYN|ACK, seq=7, ack_seq=8
930
931            So we are now A eating this SYN|ACK, ACK test passes.  So
932            does sequence test, SYN is truncated, and thus we consider
933            it a bare ACK.
934
935            If tp->defer_accept, we silently drop this bare ACK.  Otherwise,
936            we create an established connection.  Both ends (listening sockets)
937            accept the new incoming connection and try to talk to each other. 8-)
938
939            Note: This case is both harmless, and rare.  Possibility is about the
940            same as us discovering intelligent life on another plant tomorrow.
941
942            But generally, we should (RFC lies!) to accept ACK
943            from SYNACK both here and in tcp_rcv_state_process().
944            tcp_rcv_state_process() does not, hence, we do not too.
945
946            Note that the case is absolutely generic:
947            we cannot optimize anything here without
948            violating protocol. All the checks must be made
949            before attempt to create socket.
950          */
951
952         /* RFC793 page 36: "If the connection is in any non-synchronized state ...
953          *                  and the incoming segment acknowledges something not yet
954          *                  sent (the segment carries an unaccaptable ACK) ...
955          *                  a reset is sent."
956          *
957          * Invalid ACK: reset will be sent by listening socket
958          */
959         if ((flg & TCP_FLAG_ACK) &&
960             (TCP_SKB_CB(skb)->ack_seq != req->snt_isn+1))
961                 return sk;
962
963         /* Also, it would be not so bad idea to check rcv_tsecr, which
964          * is essentially ACK extension and too early or too late values
965          * should cause reset in unsynchronized states.
966          */
967
968         /* RFC793: "first check sequence number". */
969
970         if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
971                                           req->rcv_isn+1, req->rcv_isn+1+req->rcv_wnd)) {
972                 /* Out of window: send ACK and drop. */
973                 if (!(flg & TCP_FLAG_RST))
974                         req->class->send_ack(skb, req);
975                 if (paws_reject)
976                         NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
977                 return NULL;
978         }
979
980         /* In sequence, PAWS is OK. */
981
982         if (ttp.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, req->rcv_isn+1))
983                 req->ts_recent = ttp.rcv_tsval;
984
985         if (TCP_SKB_CB(skb)->seq == req->rcv_isn) {
986                 /* Truncate SYN, it is out of window starting
987                    at req->rcv_isn+1. */
988                 flg &= ~TCP_FLAG_SYN;
989         }
990
991         /* RFC793: "second check the RST bit" and
992          *         "fourth, check the SYN bit"
993          */
994         if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN))
995                 goto embryonic_reset;
996
997         /* ACK sequence verified above, just make sure ACK is
998          * set.  If ACK not set, just silently drop the packet.
999          */
1000         if (!(flg & TCP_FLAG_ACK))
1001                 return NULL;
1002
1003         /* If TCP_DEFER_ACCEPT is set, drop bare ACK. */
1004         if (tp->defer_accept && TCP_SKB_CB(skb)->end_seq == req->rcv_isn+1) {
1005                 req->acked = 1;
1006                 return NULL;
1007         }
1008
1009         /* OK, ACK is valid, create big socket and
1010          * feed this segment to it. It will repeat all
1011          * the tests. THIS SEGMENT MUST MOVE SOCKET TO
1012          * ESTABLISHED STATE. If it will be dropped after
1013          * socket is created, wait for troubles.
1014          */
1015         child = tp->af_specific->syn_recv_sock(sk, skb, req, NULL);
1016         if (child == NULL)
1017                 goto listen_overflow;
1018
1019         sk_set_owner(child, sk->sk_owner);
1020         tcp_synq_unlink(tp, req, prev);
1021         tcp_synq_removed(sk, req);
1022
1023         tcp_acceptq_queue(sk, req, child);
1024         return child;
1025
1026 listen_overflow:
1027         if (!sysctl_tcp_abort_on_overflow) {
1028                 req->acked = 1;
1029                 return NULL;
1030         }
1031
1032 embryonic_reset:
1033         NET_INC_STATS_BH(LINUX_MIB_EMBRYONICRSTS);
1034         if (!(flg & TCP_FLAG_RST))
1035                 req->class->send_reset(skb);
1036
1037         tcp_synq_drop(sk, req, prev);
1038         return NULL;
1039 }
1040
1041 /*
1042  * Queue segment on the new socket if the new socket is active,
1043  * otherwise we just shortcircuit this and continue with
1044  * the new socket.
1045  */
1046
1047 int tcp_child_process(struct sock *parent, struct sock *child,
1048                       struct sk_buff *skb)
1049 {
1050         int ret = 0;
1051         int state = child->sk_state;
1052
1053         if (!sock_owned_by_user(child)) {
1054                 ret = tcp_rcv_state_process(child, skb, skb->h.th, skb->len);
1055
1056                 /* Wakeup parent, send SIGIO */
1057                 if (state == TCP_SYN_RECV && child->sk_state != state)
1058                         parent->sk_data_ready(parent, 0);
1059         } else {
1060                 /* Alas, it is possible again, because we do lookup
1061                  * in main socket hash table and lock on listening
1062                  * socket does not protect us more.
1063                  */
1064                 sk_add_backlog(child, skb);
1065         }
1066
1067         bh_unlock_sock(child);
1068         sock_put(child);
1069         return ret;
1070 }
1071
1072 EXPORT_SYMBOL(tcp_check_req);
1073 EXPORT_SYMBOL(tcp_child_process);
1074 EXPORT_SYMBOL(tcp_create_openreq_child);
1075 EXPORT_SYMBOL(tcp_timewait_state_process);
1076 EXPORT_SYMBOL(tcp_tw_deschedule);
1077
1078 #ifdef CONFIG_SYSCTL
1079 EXPORT_SYMBOL(sysctl_tcp_tw_recycle);
1080 #endif