cleanup
[linux-2.4.21-pre4.git] / net / ipv4 / tcp_minisocks.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:     $Id: tcp_minisocks.c,v 1.1.1.1 2005/04/11 02:51:13 jack Exp $
9  *
10  * Authors:     Ross Biro, <bir7@leland.Stanford.Edu>
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *              Florian La Roche, <flla@stud.uni-sb.de>
15  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *              Matthew Dillon, <dillon@apollo.west.oic.com>
19  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *              Jorge Cwik, <jorge@laser.satlink.net>
21  */
22
23 #include <linux/config.h>
24 #include <linux/mm.h>
25 #include <linux/sysctl.h>
26 #include <net/tcp.h>
27 #include <net/inet_common.h>
28
29 #ifdef CONFIG_SYSCTL
30 #define SYNC_INIT 0 /* let the user enable it */
31 #else
32 #define SYNC_INIT 1
33 #endif
34
35 int sysctl_tcp_tw_recycle = 0;
36 int sysctl_tcp_max_tw_buckets = NR_FILE*2;
37
38 int sysctl_tcp_syncookies = SYNC_INIT; 
39 int sysctl_tcp_abort_on_overflow = 0;
40
41 static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
42 {
43         if (seq == s_win)
44                 return 1;
45         if (after(end_seq, s_win) && before(seq, e_win))
46                 return 1;
47         return (seq == e_win && seq == end_seq);
48 }
49
50 /* New-style handling of TIME_WAIT sockets. */
51
52 int tcp_tw_count = 0;
53
54
55 /* Must be called with locally disabled BHs. */
56 void tcp_timewait_kill(struct tcp_tw_bucket *tw)
57 {
58         struct tcp_ehash_bucket *ehead;
59         struct tcp_bind_hashbucket *bhead;
60         struct tcp_bind_bucket *tb;
61
62         /* Unlink from established hashes. */
63         ehead = &tcp_ehash[tw->hashent];
64         write_lock(&ehead->lock);
65         if (!tw->pprev) {
66                 write_unlock(&ehead->lock);
67                 return;
68         }
69         if(tw->next)
70                 tw->next->pprev = tw->pprev;
71         *(tw->pprev) = tw->next;
72         tw->pprev = NULL;
73         write_unlock(&ehead->lock);
74
75         /* Disassociate with bind bucket. */
76         bhead = &tcp_bhash[tcp_bhashfn(tw->num)];
77         spin_lock(&bhead->lock);
78         tb = tw->tb;
79         if(tw->bind_next)
80                 tw->bind_next->bind_pprev = tw->bind_pprev;
81         *(tw->bind_pprev) = tw->bind_next;
82         tw->tb = NULL;
83         if (tb->owners == NULL) {
84                 if (tb->next)
85                         tb->next->pprev = tb->pprev;
86                 *(tb->pprev) = tb->next;
87                 kmem_cache_free(tcp_bucket_cachep, tb);
88         }
89         spin_unlock(&bhead->lock);
90
91 #ifdef INET_REFCNT_DEBUG
92         if (atomic_read(&tw->refcnt) != 1) {
93                 printk(KERN_DEBUG "tw_bucket %p refcnt=%d\n", tw, atomic_read(&tw->refcnt));
94         }
95 #endif
96         tcp_tw_put(tw);
97 }
98
99 /* 
100  * * Main purpose of TIME-WAIT state is to close connection gracefully,
101  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
102  *   (and, probably, tail of data) and one or more our ACKs are lost.
103  * * What is TIME-WAIT timeout? It is associated with maximal packet
104  *   lifetime in the internet, which results in wrong conclusion, that
105  *   it is set to catch "old duplicate segments" wandering out of their path.
106  *   It is not quite correct. This timeout is calculated so that it exceeds
107  *   maximal retransmission timeout enough to allow to lose one (or more)
108  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
109  * * When TIME-WAIT socket receives RST, it means that another end
110  *   finally closed and we are allowed to kill TIME-WAIT too.
111  * * Second purpose of TIME-WAIT is catching old duplicate segments.
112  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
113  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
114  * * If we invented some more clever way to catch duplicates
115  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
116  *
117  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
118  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
119  * from the very beginning.
120  *
121  * NOTE. With recycling (and later with fin-wait-2) TW bucket
122  * is _not_ stateless. It means, that strictly speaking we must
123  * spinlock it. I do not want! Well, probability of misbehaviour
124  * is ridiculously low and, seems, we could use some mb() tricks
125  * to avoid misread sequence numbers, states etc.  --ANK
126  */
127 enum tcp_tw_status
128 tcp_timewait_state_process(struct tcp_tw_bucket *tw, struct sk_buff *skb,
129                            struct tcphdr *th, unsigned len)
130 {
131         struct tcp_opt tp;
132         int paws_reject = 0;
133
134         tp.saw_tstamp = 0;
135         if (th->doff > (sizeof(struct tcphdr)>>2) && tw->ts_recent_stamp) {
136                 tcp_parse_options(skb, &tp, 0);
137
138                 if (tp.saw_tstamp) {
139                         tp.ts_recent = tw->ts_recent;
140                         tp.ts_recent_stamp = tw->ts_recent_stamp;
141                         paws_reject = tcp_paws_check(&tp, th->rst);
142                 }
143         }
144
145         if (tw->substate == TCP_FIN_WAIT2) {
146                 /* Just repeat all the checks of tcp_rcv_state_process() */
147
148                 /* Out of window, send ACK */
149                 if (paws_reject ||
150                     !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
151                                    tw->rcv_nxt, tw->rcv_nxt + tw->rcv_wnd))
152                         return TCP_TW_ACK;
153
154                 if (th->rst)
155                         goto kill;
156
157                 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tw->rcv_nxt))
158                         goto kill_with_rst;
159
160                 /* Dup ACK? */
161                 if (!after(TCP_SKB_CB(skb)->end_seq, tw->rcv_nxt) ||
162                     TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
163                         tcp_tw_put(tw);
164                         return TCP_TW_SUCCESS;
165                 }
166
167                 /* New data or FIN. If new data arrive after half-duplex close,
168                  * reset.
169                  */
170                 if (!th->fin || TCP_SKB_CB(skb)->end_seq != tw->rcv_nxt+1) {
171 kill_with_rst:
172                         tcp_tw_deschedule(tw);
173                         tcp_timewait_kill(tw);
174                         tcp_tw_put(tw);
175                         return TCP_TW_RST;
176                 }
177
178                 /* FIN arrived, enter true time-wait state. */
179                 tw->substate = TCP_TIME_WAIT;
180                 tw->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
181                 if (tp.saw_tstamp) {
182                         tw->ts_recent_stamp = xtime.tv_sec;
183                         tw->ts_recent = tp.rcv_tsval;
184                 }
185
186                 /* I am shamed, but failed to make it more elegant.
187                  * Yes, it is direct reference to IP, which is impossible
188                  * to generalize to IPv6. Taking into account that IPv6
189                  * do not undertsnad recycling in any case, it not
190                  * a big problem in practice. --ANK */
191                 if (tw->family == AF_INET &&
192                     sysctl_tcp_tw_recycle && tw->ts_recent_stamp &&
193                     tcp_v4_tw_remember_stamp(tw))
194                         tcp_tw_schedule(tw, tw->timeout);
195                 else
196                         tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);
197                 return TCP_TW_ACK;
198         }
199
200         /*
201          *      Now real TIME-WAIT state.
202          *
203          *      RFC 1122:
204          *      "When a connection is [...] on TIME-WAIT state [...]
205          *      [a TCP] MAY accept a new SYN from the remote TCP to
206          *      reopen the connection directly, if it:
207          *      
208          *      (1)  assigns its initial sequence number for the new
209          *      connection to be larger than the largest sequence
210          *      number it used on the previous connection incarnation,
211          *      and
212          *
213          *      (2)  returns to TIME-WAIT state if the SYN turns out 
214          *      to be an old duplicate".
215          */
216
217         if (!paws_reject &&
218             (TCP_SKB_CB(skb)->seq == tw->rcv_nxt &&
219              (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
220                 /* In window segment, it may be only reset or bare ack. */
221
222                 if (th->rst) {
223                         /* This is TIME_WAIT assasination, in two flavors.
224                          * Oh well... nobody has a sufficient solution to this
225                          * protocol bug yet.
226                          */
227                         if (sysctl_tcp_rfc1337 == 0) {
228 kill:
229                                 tcp_tw_deschedule(tw);
230                                 tcp_timewait_kill(tw);
231                                 tcp_tw_put(tw);
232                                 return TCP_TW_SUCCESS;
233                         }
234                 }
235                 tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);
236
237                 if (tp.saw_tstamp) {
238                         tw->ts_recent = tp.rcv_tsval;
239                         tw->ts_recent_stamp = xtime.tv_sec;
240                 }
241
242                 tcp_tw_put(tw);
243                 return TCP_TW_SUCCESS;
244         }
245
246         /* Out of window segment.
247
248            All the segments are ACKed immediately.
249
250            The only exception is new SYN. We accept it, if it is
251            not old duplicate and we are not in danger to be killed
252            by delayed old duplicates. RFC check is that it has
253            newer sequence number works at rates <40Mbit/sec.
254            However, if paws works, it is reliable AND even more,
255            we even may relax silly seq space cutoff.
256
257            RED-PEN: we violate main RFC requirement, if this SYN will appear
258            old duplicate (i.e. we receive RST in reply to SYN-ACK),
259            we must return socket to time-wait state. It is not good,
260            but not fatal yet.
261          */
262
263         if (th->syn && !th->rst && !th->ack && !paws_reject &&
264             (after(TCP_SKB_CB(skb)->seq, tw->rcv_nxt) ||
265              (tp.saw_tstamp && (s32)(tw->ts_recent - tp.rcv_tsval) < 0))) {
266                 u32 isn = tw->snd_nxt+65535+2;
267                 if (isn == 0)
268                         isn++;
269                 TCP_SKB_CB(skb)->when = isn;
270                 return TCP_TW_SYN;
271         }
272
273         if (paws_reject)
274                 NET_INC_STATS_BH(PAWSEstabRejected);
275
276         if(!th->rst) {
277                 /* In this case we must reset the TIMEWAIT timer.
278                  *
279                  * If it is ACKless SYN it may be both old duplicate
280                  * and new good SYN with random sequence number <rcv_nxt.
281                  * Do not reschedule in the last case.
282                  */
283                 if (paws_reject || th->ack)
284                         tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN);
285
286                 /* Send ACK. Note, we do not put the bucket,
287                  * it will be released by caller.
288                  */
289                 return TCP_TW_ACK;
290         }
291         tcp_tw_put(tw);
292         return TCP_TW_SUCCESS;
293 }
294
295 /* Enter the time wait state.  This is called with locally disabled BH.
296  * Essentially we whip up a timewait bucket, copy the
297  * relevant info into it from the SK, and mess with hash chains
298  * and list linkage.
299  */
300 static void __tcp_tw_hashdance(struct sock *sk, struct tcp_tw_bucket *tw)
301 {
302         struct tcp_ehash_bucket *ehead = &tcp_ehash[sk->hashent];
303         struct tcp_bind_hashbucket *bhead;
304         struct sock **head, *sktw;
305
306         /* Step 1: Put TW into bind hash. Original socket stays there too.
307            Note, that any socket with sk->num!=0 MUST be bound in binding
308            cache, even if it is closed.
309          */
310         bhead = &tcp_bhash[tcp_bhashfn(sk->num)];
311         spin_lock(&bhead->lock);
312         tw->tb = (struct tcp_bind_bucket *)sk->prev;
313         BUG_TRAP(sk->prev!=NULL);
314         if ((tw->bind_next = tw->tb->owners) != NULL)
315                 tw->tb->owners->bind_pprev = &tw->bind_next;
316         tw->tb->owners = (struct sock*)tw;
317         tw->bind_pprev = &tw->tb->owners;
318         spin_unlock(&bhead->lock);
319
320         write_lock(&ehead->lock);
321
322         /* Step 2: Remove SK from established hash. */
323         if (sk->pprev) {
324                 if(sk->next)
325                         sk->next->pprev = sk->pprev;
326                 *sk->pprev = sk->next;
327                 sk->pprev = NULL;
328                 sock_prot_dec_use(sk->prot);
329         }
330
331         /* Step 3: Hash TW into TIMEWAIT half of established hash table. */
332         head = &(ehead + tcp_ehash_size)->chain;
333         sktw = (struct sock *)tw;
334         if((sktw->next = *head) != NULL)
335                 (*head)->pprev = &sktw->next;
336         *head = sktw;
337         sktw->pprev = head;
338         atomic_inc(&tw->refcnt);
339
340         write_unlock(&ehead->lock);
341 }
342
343 /* 
344  * Move a socket to time-wait or dead fin-wait-2 state.
345  */ 
346 void tcp_time_wait(struct sock *sk, int state, int timeo)
347 {
348         struct tcp_tw_bucket *tw = NULL;
349         struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
350         int recycle_ok = 0;
351
352         if (sysctl_tcp_tw_recycle && tp->ts_recent_stamp)
353                 recycle_ok = tp->af_specific->remember_stamp(sk);
354
355         if (tcp_tw_count < sysctl_tcp_max_tw_buckets)
356                 tw = kmem_cache_alloc(tcp_timewait_cachep, SLAB_ATOMIC);
357
358         if(tw != NULL) {
359                 int rto = (tp->rto<<2) - (tp->rto>>1);
360
361                 /* Give us an identity. */
362                 tw->daddr       = sk->daddr;
363                 tw->rcv_saddr   = sk->rcv_saddr;
364                 tw->bound_dev_if= sk->bound_dev_if;
365                 tw->num         = sk->num;
366                 tw->state       = TCP_TIME_WAIT;
367                 tw->substate    = state;
368                 tw->sport       = sk->sport;
369                 tw->dport       = sk->dport;
370                 tw->family      = sk->family;
371                 tw->reuse       = sk->reuse;
372                 tw->rcv_wscale  = tp->rcv_wscale;
373                 atomic_set(&tw->refcnt, 1);
374
375                 tw->hashent     = sk->hashent;
376                 tw->rcv_nxt     = tp->rcv_nxt;
377                 tw->snd_nxt     = tp->snd_nxt;
378                 tw->rcv_wnd     = tcp_receive_window(tp);
379                 tw->ts_recent   = tp->ts_recent;
380                 tw->ts_recent_stamp= tp->ts_recent_stamp;
381                 tw->pprev_death = NULL;
382
383 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
384                 if(tw->family == PF_INET6) {
385                         memcpy(&tw->v6_daddr,
386                                &sk->net_pinfo.af_inet6.daddr,
387                                sizeof(struct in6_addr));
388                         memcpy(&tw->v6_rcv_saddr,
389                                &sk->net_pinfo.af_inet6.rcv_saddr,
390                                sizeof(struct in6_addr));
391                 }
392 #endif
393                 /* Linkage updates. */
394                 __tcp_tw_hashdance(sk, tw);
395
396                 /* Get the TIME_WAIT timeout firing. */
397                 if (timeo < rto)
398                         timeo = rto;
399
400                 if (recycle_ok) {
401                         tw->timeout = rto;
402                 } else {
403                         tw->timeout = TCP_TIMEWAIT_LEN;
404                         if (state == TCP_TIME_WAIT)
405                                 timeo = TCP_TIMEWAIT_LEN;
406                 }
407
408                 tcp_tw_schedule(tw, timeo);
409                 tcp_tw_put(tw);
410         } else {
411                 /* Sorry, if we're out of memory, just CLOSE this
412                  * socket up.  We've got bigger problems than
413                  * non-graceful socket closings.
414                  */
415                 if (net_ratelimit())
416                         printk(KERN_INFO "TCP: time wait bucket table overflow\n");
417         }
418
419         tcp_update_metrics(sk);
420         tcp_done(sk);
421 }
422
423 /* Kill off TIME_WAIT sockets once their lifetime has expired. */
424 static int tcp_tw_death_row_slot = 0;
425
426 static void tcp_twkill(unsigned long);
427
428 static struct tcp_tw_bucket *tcp_tw_death_row[TCP_TWKILL_SLOTS];
429 static spinlock_t tw_death_lock = SPIN_LOCK_UNLOCKED;
430 static struct timer_list tcp_tw_timer = { function: tcp_twkill };
431
432 static void SMP_TIMER_NAME(tcp_twkill)(unsigned long dummy)
433 {
434         struct tcp_tw_bucket *tw;
435         int killed = 0;
436
437         /* NOTE: compare this to previous version where lock
438          * was released after detaching chain. It was racy,
439          * because tw buckets are scheduled in not serialized context
440          * in 2.3 (with netfilter), and with softnet it is common, because
441          * soft irqs are not sequenced.
442          */
443         spin_lock(&tw_death_lock);
444
445         if (tcp_tw_count == 0)
446                 goto out;
447
448         while((tw = tcp_tw_death_row[tcp_tw_death_row_slot]) != NULL) {
449                 tcp_tw_death_row[tcp_tw_death_row_slot] = tw->next_death;
450                 tw->pprev_death = NULL;
451                 spin_unlock(&tw_death_lock);
452
453                 tcp_timewait_kill(tw);
454                 tcp_tw_put(tw);
455
456                 killed++;
457
458                 spin_lock(&tw_death_lock);
459         }
460         tcp_tw_death_row_slot =
461                 ((tcp_tw_death_row_slot + 1) & (TCP_TWKILL_SLOTS - 1));
462
463         if ((tcp_tw_count -= killed) != 0)
464                 mod_timer(&tcp_tw_timer, jiffies+TCP_TWKILL_PERIOD);
465         net_statistics[smp_processor_id()*2].TimeWaited += killed;
466 out:
467         spin_unlock(&tw_death_lock);
468 }
469
470 SMP_TIMER_DEFINE(tcp_twkill, tcp_twkill_task);
471
472 /* These are always called from BH context.  See callers in
473  * tcp_input.c to verify this.
474  */
475
476 /* This is for handling early-kills of TIME_WAIT sockets. */
477 void tcp_tw_deschedule(struct tcp_tw_bucket *tw)
478 {
479         spin_lock(&tw_death_lock);
480         if (tw->pprev_death) {
481                 if(tw->next_death)
482                         tw->next_death->pprev_death = tw->pprev_death;
483                 *tw->pprev_death = tw->next_death;
484                 tw->pprev_death = NULL;
485                 tcp_tw_put(tw);
486                 if (--tcp_tw_count == 0)
487                         del_timer(&tcp_tw_timer);
488         }
489         spin_unlock(&tw_death_lock);
490 }
491
492 /* Short-time timewait calendar */
493
494 static int tcp_twcal_hand = -1;
495 static int tcp_twcal_jiffie;
496 static void tcp_twcal_tick(unsigned long);
497 static struct timer_list tcp_twcal_timer = {function: tcp_twcal_tick};
498 static struct tcp_tw_bucket *tcp_twcal_row[TCP_TW_RECYCLE_SLOTS];
499
500 void tcp_tw_schedule(struct tcp_tw_bucket *tw, int timeo)
501 {
502         struct tcp_tw_bucket **tpp;
503         int slot;
504
505         /* timeout := RTO * 3.5
506          *
507          * 3.5 = 1+2+0.5 to wait for two retransmits.
508          *
509          * RATIONALE: if FIN arrived and we entered TIME-WAIT state,
510          * our ACK acking that FIN can be lost. If N subsequent retransmitted
511          * FINs (or previous seqments) are lost (probability of such event
512          * is p^(N+1), where p is probability to lose single packet and
513          * time to detect the loss is about RTO*(2^N - 1) with exponential
514          * backoff). Normal timewait length is calculated so, that we
515          * waited at least for one retransmitted FIN (maximal RTO is 120sec).
516          * [ BTW Linux. following BSD, violates this requirement waiting
517          *   only for 60sec, we should wait at least for 240 secs.
518          *   Well, 240 consumes too much of resources 8)
519          * ]
520          * This interval is not reduced to catch old duplicate and
521          * responces to our wandering segments living for two MSLs.
522          * However, if we use PAWS to detect
523          * old duplicates, we can reduce the interval to bounds required
524          * by RTO, rather than MSL. So, if peer understands PAWS, we
525          * kill tw bucket after 3.5*RTO (it is important that this number
526          * is greater than TS tick!) and detect old duplicates with help
527          * of PAWS.
528          */
529         slot = (timeo + (1<<TCP_TW_RECYCLE_TICK) - 1) >> TCP_TW_RECYCLE_TICK;
530
531         spin_lock(&tw_death_lock);
532
533         /* Unlink it, if it was scheduled */
534         if (tw->pprev_death) {
535                 if(tw->next_death)
536                         tw->next_death->pprev_death = tw->pprev_death;
537                 *tw->pprev_death = tw->next_death;
538                 tw->pprev_death = NULL;
539                 tcp_tw_count--;
540         } else
541                 atomic_inc(&tw->refcnt);
542
543         if (slot >= TCP_TW_RECYCLE_SLOTS) {
544                 /* Schedule to slow timer */
545                 if (timeo >= TCP_TIMEWAIT_LEN) {
546                         slot = TCP_TWKILL_SLOTS-1;
547                 } else {
548                         slot = (timeo + TCP_TWKILL_PERIOD-1) / TCP_TWKILL_PERIOD;
549                         if (slot >= TCP_TWKILL_SLOTS)
550                                 slot = TCP_TWKILL_SLOTS-1;
551                 }
552                 tw->ttd = jiffies + timeo;
553                 slot = (tcp_tw_death_row_slot + slot) & (TCP_TWKILL_SLOTS - 1);
554                 tpp = &tcp_tw_death_row[slot];
555         } else {
556                 tw->ttd = jiffies + (slot<<TCP_TW_RECYCLE_TICK);
557
558                 if (tcp_twcal_hand < 0) {
559                         tcp_twcal_hand = 0;
560                         tcp_twcal_jiffie = jiffies;
561                         tcp_twcal_timer.expires = tcp_twcal_jiffie + (slot<<TCP_TW_RECYCLE_TICK);
562                         add_timer(&tcp_twcal_timer);
563                 } else {
564                         if ((long)(tcp_twcal_timer.expires - jiffies) > (slot<<TCP_TW_RECYCLE_TICK))
565                                 mod_timer(&tcp_twcal_timer, jiffies + (slot<<TCP_TW_RECYCLE_TICK));
566                         slot = (tcp_twcal_hand + slot)&(TCP_TW_RECYCLE_SLOTS-1);
567                 }
568                 tpp = &tcp_twcal_row[slot];
569         }
570
571         if((tw->next_death = *tpp) != NULL)
572                 (*tpp)->pprev_death = &tw->next_death;
573         *tpp = tw;
574         tw->pprev_death = tpp;
575
576         if (tcp_tw_count++ == 0)
577                 mod_timer(&tcp_tw_timer, jiffies+TCP_TWKILL_PERIOD);
578         spin_unlock(&tw_death_lock);
579 }
580
581 void SMP_TIMER_NAME(tcp_twcal_tick)(unsigned long dummy)
582 {
583         int n, slot;
584         unsigned long j;
585         unsigned long now = jiffies;
586         int killed = 0;
587         int adv = 0;
588
589         spin_lock(&tw_death_lock);
590         if (tcp_twcal_hand < 0)
591                 goto out;
592
593         slot = tcp_twcal_hand;
594         j = tcp_twcal_jiffie;
595
596         for (n=0; n<TCP_TW_RECYCLE_SLOTS; n++) {
597                 if ((long)(j - now) <= 0) {
598                         struct tcp_tw_bucket *tw;
599
600                         while((tw = tcp_twcal_row[slot]) != NULL) {
601                                 tcp_twcal_row[slot] = tw->next_death;
602                                 tw->pprev_death = NULL;
603
604                                 tcp_timewait_kill(tw);
605                                 tcp_tw_put(tw);
606                                 killed++;
607                         }
608                 } else {
609                         if (!adv) {
610                                 adv = 1;
611                                 tcp_twcal_jiffie = j;
612                                 tcp_twcal_hand = slot;
613                         }
614
615                         if (tcp_twcal_row[slot] != NULL) {
616                                 mod_timer(&tcp_twcal_timer, j);
617                                 goto out;
618                         }
619                 }
620                 j += (1<<TCP_TW_RECYCLE_TICK);
621                 slot = (slot+1)&(TCP_TW_RECYCLE_SLOTS-1);
622         }
623         tcp_twcal_hand = -1;
624
625 out:
626         if ((tcp_tw_count -= killed) == 0)
627                 del_timer(&tcp_tw_timer);
628         net_statistics[smp_processor_id()*2].TimeWaitKilled += killed;
629         spin_unlock(&tw_death_lock);
630 }
631
632 SMP_TIMER_DEFINE(tcp_twcal_tick, tcp_twcal_tasklet);
633
634
635 /* This is not only more efficient than what we used to do, it eliminates
636  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
637  *
638  * Actually, we could lots of memory writes here. tp of listening
639  * socket contains all necessary default parameters.
640  */
641 struct sock *tcp_create_openreq_child(struct sock *sk, struct open_request *req, struct sk_buff *skb)
642 {
643         struct sock *newsk = sk_alloc(PF_INET, GFP_ATOMIC, 0);
644
645         if(newsk != NULL) {
646                 struct tcp_opt *newtp;
647 #ifdef CONFIG_FILTER
648                 struct sk_filter *filter;
649 #endif
650
651                 memcpy(newsk, sk, sizeof(*newsk));
652                 newsk->state = TCP_SYN_RECV;
653
654                 /* SANITY */
655                 newsk->pprev = NULL;
656                 newsk->prev = NULL;
657
658                 /* Clone the TCP header template */
659                 newsk->dport = req->rmt_port;
660
661                 sock_lock_init(newsk);
662                 bh_lock_sock(newsk);
663
664                 newsk->dst_lock = RW_LOCK_UNLOCKED;
665                 atomic_set(&newsk->rmem_alloc, 0);
666                 skb_queue_head_init(&newsk->receive_queue);
667                 atomic_set(&newsk->wmem_alloc, 0);
668                 skb_queue_head_init(&newsk->write_queue);
669                 atomic_set(&newsk->omem_alloc, 0);
670                 newsk->wmem_queued = 0;
671                 newsk->forward_alloc = 0;
672
673                 newsk->done = 0;
674                 newsk->userlocks = sk->userlocks & ~SOCK_BINDPORT_LOCK;
675                 newsk->proc = 0;
676                 newsk->backlog.head = newsk->backlog.tail = NULL;
677                 newsk->callback_lock = RW_LOCK_UNLOCKED;
678                 skb_queue_head_init(&newsk->error_queue);
679                 newsk->write_space = tcp_write_space;
680 #ifdef CONFIG_FILTER
681                 if ((filter = newsk->filter) != NULL)
682                         sk_filter_charge(newsk, filter);
683 #endif
684
685                 /* Now setup tcp_opt */
686                 newtp = &(newsk->tp_pinfo.af_tcp);
687                 newtp->pred_flags = 0;
688                 newtp->rcv_nxt = req->rcv_isn + 1;
689                 newtp->snd_nxt = req->snt_isn + 1;
690                 newtp->snd_una = req->snt_isn + 1;
691                 newtp->snd_sml = req->snt_isn + 1;
692
693                 tcp_prequeue_init(newtp);
694
695                 tcp_init_wl(newtp, req->snt_isn, req->rcv_isn);
696
697                 newtp->retransmits = 0;
698                 newtp->backoff = 0;
699                 newtp->srtt = 0;
700                 newtp->mdev = TCP_TIMEOUT_INIT;
701                 newtp->rto = TCP_TIMEOUT_INIT;
702
703                 newtp->packets_out = 0;
704                 newtp->left_out = 0;
705                 newtp->retrans_out = 0;
706                 newtp->sacked_out = 0;
707                 newtp->fackets_out = 0;
708                 newtp->snd_ssthresh = 0x7fffffff;
709
710                 /* So many TCP implementations out there (incorrectly) count the
711                  * initial SYN frame in their delayed-ACK and congestion control
712                  * algorithms that we must have the following bandaid to talk
713                  * efficiently to them.  -DaveM
714                  */
715                 newtp->snd_cwnd = 2;
716                 newtp->snd_cwnd_cnt = 0;
717
718                 newtp->frto_counter = 0;
719                 newtp->frto_highmark = 0;
720
721                 newtp->ca_state = TCP_CA_Open;
722                 tcp_init_xmit_timers(newsk);
723                 skb_queue_head_init(&newtp->out_of_order_queue);
724                 newtp->send_head = NULL;
725                 newtp->rcv_wup = req->rcv_isn + 1;
726                 newtp->write_seq = req->snt_isn + 1;
727                 newtp->pushed_seq = newtp->write_seq;
728                 newtp->copied_seq = req->rcv_isn + 1;
729
730                 newtp->saw_tstamp = 0;
731
732                 newtp->dsack = 0;
733                 newtp->eff_sacks = 0;
734
735                 newtp->probes_out = 0;
736                 newtp->num_sacks = 0;
737                 newtp->urg_data = 0;
738                 newtp->listen_opt = NULL;
739                 newtp->accept_queue = newtp->accept_queue_tail = NULL;
740                 /* Deinitialize syn_wait_lock to trap illegal accesses. */
741                 memset(&newtp->syn_wait_lock, 0, sizeof(newtp->syn_wait_lock));
742
743                 /* Back to base struct sock members. */
744                 newsk->err = 0;
745                 newsk->priority = 0;
746                 atomic_set(&newsk->refcnt, 2);
747 #ifdef INET_REFCNT_DEBUG
748                 atomic_inc(&inet_sock_nr);
749 #endif
750                 atomic_inc(&tcp_sockets_allocated);
751
752                 if (newsk->keepopen)
753                         tcp_reset_keepalive_timer(newsk, keepalive_time_when(newtp));
754                 newsk->socket = NULL;
755                 newsk->sleep = NULL;
756
757                 newtp->tstamp_ok = req->tstamp_ok;
758                 if((newtp->sack_ok = req->sack_ok) != 0) {
759                         if (sysctl_tcp_fack)
760                                 newtp->sack_ok |= 2;
761                 }
762                 newtp->window_clamp = req->window_clamp;
763                 newtp->rcv_ssthresh = req->rcv_wnd;
764                 newtp->rcv_wnd = req->rcv_wnd;
765                 newtp->wscale_ok = req->wscale_ok;
766                 if (newtp->wscale_ok) {
767                         newtp->snd_wscale = req->snd_wscale;
768                         newtp->rcv_wscale = req->rcv_wscale;
769                 } else {
770                         newtp->snd_wscale = newtp->rcv_wscale = 0;
771                         newtp->window_clamp = min(newtp->window_clamp, 65535U);
772                 }
773                 newtp->snd_wnd = ntohs(skb->h.th->window) << newtp->snd_wscale;
774                 newtp->max_window = newtp->snd_wnd;
775
776                 if (newtp->tstamp_ok) {
777                         newtp->ts_recent = req->ts_recent;
778                         newtp->ts_recent_stamp = xtime.tv_sec;
779                         newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
780                 } else {
781                         newtp->ts_recent_stamp = 0;
782                         newtp->tcp_header_len = sizeof(struct tcphdr);
783                 }
784                 if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len)
785                         newtp->ack.last_seg_size = skb->len-newtp->tcp_header_len;
786                 newtp->mss_clamp = req->mss;
787                 TCP_ECN_openreq_child(newtp, req);
788
789                 TCP_INC_STATS_BH(TcpPassiveOpens);
790         }
791         return newsk;
792 }
793
794 /* 
795  *      Process an incoming packet for SYN_RECV sockets represented
796  *      as an open_request.
797  */
798
799 struct sock *tcp_check_req(struct sock *sk,struct sk_buff *skb,
800                            struct open_request *req,
801                            struct open_request **prev)
802 {
803         struct tcphdr *th = skb->h.th;
804         struct tcp_opt *tp = &(sk->tp_pinfo.af_tcp);
805         u32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
806         int paws_reject = 0;
807         struct tcp_opt ttp;
808         struct sock *child;
809
810         ttp.saw_tstamp = 0;
811         if (th->doff > (sizeof(struct tcphdr)>>2)) {
812                 tcp_parse_options(skb, &ttp, 0);
813
814                 if (ttp.saw_tstamp) {
815                         ttp.ts_recent = req->ts_recent;
816                         /* We do not store true stamp, but it is not required,
817                          * it can be estimated (approximately)
818                          * from another data.
819                          */
820                         ttp.ts_recent_stamp = xtime.tv_sec - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
821                         paws_reject = tcp_paws_check(&ttp, th->rst);
822                 }
823         }
824
825         /* Check for pure retransmitted SYN. */
826         if (TCP_SKB_CB(skb)->seq == req->rcv_isn &&
827             flg == TCP_FLAG_SYN &&
828             !paws_reject) {
829                 /*
830                  * RFC793 draws (Incorrectly! It was fixed in RFC1122)
831                  * this case on figure 6 and figure 8, but formal
832                  * protocol description says NOTHING.
833                  * To be more exact, it says that we should send ACK,
834                  * because this segment (at least, if it has no data)
835                  * is out of window.
836                  *
837                  *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
838                  *  describe SYN-RECV state. All the description
839                  *  is wrong, we cannot believe to it and should
840                  *  rely only on common sense and implementation
841                  *  experience.
842                  *
843                  * Enforce "SYN-ACK" according to figure 8, figure 6
844                  * of RFC793, fixed by RFC1122.
845                  */
846                 req->class->rtx_syn_ack(sk, req, NULL);
847                 return NULL;
848         }
849
850         /* Further reproduces section "SEGMENT ARRIVES"
851            for state SYN-RECEIVED of RFC793.
852            It is broken, however, it does not work only
853            when SYNs are crossed.
854
855            You would think that SYN crossing is impossible here, since
856            we should have a SYN_SENT socket (from connect()) on our end,
857            but this is not true if the crossed SYNs were sent to both
858            ends by a malicious third party.  We must defend against this,
859            and to do that we first verify the ACK (as per RFC793, page
860            36) and reset if it is invalid.  Is this a true full defense?
861            To convince ourselves, let us consider a way in which the ACK
862            test can still pass in this 'malicious crossed SYNs' case.
863            Malicious sender sends identical SYNs (and thus identical sequence
864            numbers) to both A and B:
865
866                 A: gets SYN, seq=7
867                 B: gets SYN, seq=7
868
869            By our good fortune, both A and B select the same initial
870            send sequence number of seven :-)
871
872                 A: sends SYN|ACK, seq=7, ack_seq=8
873                 B: sends SYN|ACK, seq=7, ack_seq=8
874
875            So we are now A eating this SYN|ACK, ACK test passes.  So
876            does sequence test, SYN is truncated, and thus we consider
877            it a bare ACK.
878
879            If tp->defer_accept, we silently drop this bare ACK.  Otherwise,
880            we create an established connection.  Both ends (listening sockets)
881            accept the new incoming connection and try to talk to each other. 8-)
882
883            Note: This case is both harmless, and rare.  Possibility is about the
884            same as us discovering intelligent life on another plant tomorrow.
885
886            But generally, we should (RFC lies!) to accept ACK
887            from SYNACK both here and in tcp_rcv_state_process().
888            tcp_rcv_state_process() does not, hence, we do not too.
889
890            Note that the case is absolutely generic:
891            we cannot optimize anything here without
892            violating protocol. All the checks must be made
893            before attempt to create socket.
894          */
895
896         /* RFC793 page 36: "If the connection is in any non-synchronized state ...
897          *                  and the incoming segment acknowledges something not yet
898          *                  sent (the segment carries an unaccaptable ACK) ...
899          *                  a reset is sent."
900          *
901          * Invalid ACK: reset will be sent by listening socket
902          */
903         if ((flg & TCP_FLAG_ACK) &&
904             (TCP_SKB_CB(skb)->ack_seq != req->snt_isn+1))
905                 return sk;
906
907         /* Also, it would be not so bad idea to check rcv_tsecr, which
908          * is essentially ACK extension and too early or too late values
909          * should cause reset in unsynchronized states.
910          */
911
912         /* RFC793: "first check sequence number". */
913
914         if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
915                                           req->rcv_isn+1, req->rcv_isn+1+req->rcv_wnd)) {
916                 /* Out of window: send ACK and drop. */
917                 if (!(flg & TCP_FLAG_RST))
918                         req->class->send_ack(skb, req);
919                 if (paws_reject)
920                         NET_INC_STATS_BH(PAWSEstabRejected);
921                 return NULL;
922         }
923
924         /* In sequence, PAWS is OK. */
925
926         if (ttp.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, req->rcv_isn+1))
927                 req->ts_recent = ttp.rcv_tsval;
928
929         if (TCP_SKB_CB(skb)->seq == req->rcv_isn) {
930                 /* Truncate SYN, it is out of window starting
931                    at req->rcv_isn+1. */
932                 flg &= ~TCP_FLAG_SYN;
933         }
934
935         /* RFC793: "second check the RST bit" and
936          *         "fourth, check the SYN bit"
937          */
938         if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN))
939                 goto embryonic_reset;
940
941         /* If TCP_DEFER_ACCEPT is set, drop bare ACK. */
942         if (tp->defer_accept && TCP_SKB_CB(skb)->end_seq == req->rcv_isn+1) {
943                 req->acked = 1;
944                 return NULL;
945         }
946
947         /* OK, ACK is valid, create big socket and
948          * feed this segment to it. It will repeat all
949          * the tests. THIS SEGMENT MUST MOVE SOCKET TO
950          * ESTABLISHED STATE. If it will be dropped after
951          * socket is created, wait for troubles.
952          */
953         child = tp->af_specific->syn_recv_sock(sk, skb, req, NULL);
954         if (child == NULL)
955                 goto listen_overflow;
956
957         tcp_synq_unlink(tp, req, prev);
958         tcp_synq_removed(sk, req);
959
960         tcp_acceptq_queue(sk, req, child);
961         return child;
962
963 listen_overflow:
964         if (!sysctl_tcp_abort_on_overflow) {
965                 req->acked = 1;
966                 return NULL;
967         }
968
969 embryonic_reset:
970         NET_INC_STATS_BH(EmbryonicRsts);
971         if (!(flg & TCP_FLAG_RST))
972                 req->class->send_reset(skb);
973
974         tcp_synq_drop(sk, req, prev);
975         return NULL;
976 }
977
978 /*
979  * Queue segment on the new socket if the new socket is active,
980  * otherwise we just shortcircuit this and continue with
981  * the new socket.
982  */
983
984 int tcp_child_process(struct sock *parent, struct sock *child,
985                       struct sk_buff *skb)
986 {
987         int ret = 0;
988         int state = child->state;
989
990         if (child->lock.users == 0) {
991                 ret = tcp_rcv_state_process(child, skb, skb->h.th, skb->len);
992
993                 /* Wakeup parent, send SIGIO */
994                 if (state == TCP_SYN_RECV && child->state != state)
995                         parent->data_ready(parent, 0);
996         } else {
997                 /* Alas, it is possible again, because we do lookup
998                  * in main socket hash table and lock on listening
999                  * socket does not protect us more.
1000                  */
1001                 sk_add_backlog(child, skb);
1002         }
1003
1004         bh_unlock_sock(child);
1005         sock_put(child);
1006         return ret;
1007 }