original comment: +Wilson03172004,marked due to this pci host does not support MWI
[linux-2.4.git] / Documentation / usb / proc_usb_info.txt
1 /proc/bus/usb filesystem output
2 ===============================
3 (version 2002.03.18)
4
5
6 The /proc filesystem for USB devices provides /proc/bus/usb/drivers
7 and /proc/bus/usb/devices, as well as /proc/bus/usb/BBB/DDD files.
8
9
10 **NOTE**: If /proc/bus/usb appears empty, and a host controller
11           driver has been linked, then you need to mount the
12           filesystem.  Issue the command (as root):
13
14       mount -t usbfs none /proc/bus/usb
15
16           An alternative and more permanent method would be to add
17
18       none  /proc/bus/usb  usbfs  defaults  0  0
19
20           to /etc/fstab.  This will mount usbfs at each reboot.
21           You can then issue `cat /proc/bus/usb/devices` to extract
22           USB device information, and user mode drivers can use usbfs 
23           to interact with USB devices.
24
25           There are a number of mount options supported by usbfs.
26           Consult the source code (linux/drivers/usb/inode.c) for
27           information about those options.
28
29 **NOTE**: The filesystem has been renamed from "usbdevfs" to
30           "usbfs", to reduce confusion with "devfs".  You may
31           still see references to the older "usbdevfs" name.
32
33 For more information on mounting the usbfs file system, see the
34 "USB Device Filesystem" section of the USB Guide. The latest copy 
35 of the USB Guide can be found at http://www.linux-usb.org/
36
37
38 THE /proc/bus/usb/BBB/DDD FILES:
39 --------------------------------
40 Each connected USB device has one file.  The BBB indicates the bus
41 number.  The DDD indicates the device address on that bus.  Both
42 of these numbers are assigned sequentially, and can be reused, so
43 you can't rely on them for stable access to devices.  For example,
44 it's relatively common for devices to re-enumerate while they are
45 still connected (perhaps someone jostled their power supply, hub,
46 or USB cable), so a device might be 002/027 when you first connect
47 it and 002/048 sometime later.
48
49 These files can be read as binary data.  The binary data consists
50 of first the device descriptor, then the descriptors for each
51 configuration of the device.  That information is also shown in
52 text form by the /proc/bus/usb/devices file, described later.
53
54 These files may also be used to write user-level drivers for the USB
55 devices.  You would open the /proc/bus/usb/BBB/DDD file read/write,
56 read its descriptors to make sure it's the device you expect, and then
57 bind to an interface (or perhaps several) using an ioctl call.  You
58 would issue more ioctls to the device to communicate to it using
59 control, bulk, or other kinds of USB transfers.  The IOCTLs are
60 listed in the <linux/usbdevice_fs.h> file, and at this writing the
61 source code (linux/drivers/usb/devio.c) is the primary reference
62 for how to access devices through those files.
63
64 Note that since by default these BBB/DDD files are writable only by
65 root, only root can write such user mode drivers.  You can selectively
66 grant read/write permissions to other users by using "chmod".  Also,
67 usbfs mount options such as "devmode=0666" may be helpful.
68
69
70
71 THE /proc/bus/usb/drivers FILE:
72 -------------------------------
73 Each of the USB device drivers linked into your kernel (statically,
74 or dynamically using "modprobe") is listed in the "drivers" file.
75 Here's an example from one system:
76
77          usbdevfs
78          hub
79   0- 15: usblp
80          usbnet
81          serial
82          usb-storage
83          pegasus
84
85 If you see this file, "usbdevfs" and "hub" will always be listed,
86 since those are part of the "usbcore" framework.
87
88 Drivers that use the USB major number (180) to provide character devices
89 will include a range of minor numbers, as shown above for the "usblp"
90 (actually "printer.o") module.  USB device drivers can of course use any
91 major number, but it's easy to use the USB range since there's explicit
92 support for subdividing it in the USB device driver framework.
93
94
95 THE /proc/bus/usb/devices FILE:
96 -------------------------------
97 In /proc/bus/usb/devices, each device's output has multiple
98 lines of ASCII output.
99 I made it ASCII instead of binary on purpose, so that someone
100 can obtain some useful data from it without the use of an
101 auxiliary program.  However, with an auxiliary program, the numbers
102 in the first 4 columns of each "T:" line (topology info:
103 Lev, Prnt, Port, Cnt) can be used to build a USB topology diagram.
104
105 Each line is tagged with a one-character ID for that line:
106
107 T = Topology (etc.)
108 B = Bandwidth (applies only to USB host controllers, which are
109     virtualized as root hubs)
110 D = Device descriptor info.
111 P = Product ID info. (from Device descriptor, but they won't fit
112     together on one line)
113 S = String descriptors.
114 C = Configuration descriptor info. (* = active configuration)
115 I = Interface descriptor info.
116 E = Endpoint descriptor info.
117
118 =======================================================================
119
120 /proc/bus/usb/devices output format:
121
122 Legend:
123   d = decimal number (may have leading spaces or 0's)
124   x = hexadecimal number (may have leading spaces or 0's)
125   s = string
126
127
128 Topology info:
129
130 T:  Bus=dd Lev=dd Prnt=dd Port=dd Cnt=dd Dev#=ddd Spd=ddd MxCh=dd
131 |   |      |      |       |       |      |        |       |__MaxChildren
132 |   |      |      |       |       |      |        |__Device Speed in Mbps
133 |   |      |      |       |       |      |__DeviceNumber
134 |   |      |      |       |       |__Count of devices at this level
135 |   |      |      |       |__Connector/Port on Parent for this device
136 |   |      |      |__Parent DeviceNumber
137 |   |      |__Level in topology for this bus
138 |   |__Bus number
139 |__Topology info tag
140
141     Speed may be:
142         1.5     Mbit/s for low speed USB
143         12      Mbit/s for full speed USB
144         480     Mbit/s for high speed USB (added for USB 2.0)
145
146
147 Bandwidth info:
148 B:  Alloc=ddd/ddd us (xx%), #Int=ddd, #Iso=ddd
149 |   |                       |         |__Number of isochronous requests
150 |   |                       |__Number of interrupt requests
151 |   |__Total Bandwidth allocated to this bus
152 |__Bandwidth info tag
153
154     Bandwidth allocation is an approximation of how much of one frame
155     (millisecond) is in use.  It reflects only periodic transfers, which
156     are the only transfers that reserve bandwidth.  Control and bulk
157     transfers use all other bandwidth, including reserved bandwidth that
158     is not used for transfers (such as for short packets).
159     
160     The percentage is how much of the "reserved" bandwidth is scheduled by
161     those transfers.  For a low or full speed bus (loosely, "USB 1.1"),
162     90% of the bus bandwidth is reserved.  For a high speed bus (loosely,
163     "USB 2.0") 80% is reserved.
164
165
166 Device descriptor info & Product ID info:
167
168 D:  Ver=x.xx Cls=xx(s) Sub=xx Prot=xx MxPS=dd #Cfgs=dd
169 P:  Vendor=xxxx ProdID=xxxx Rev=xx.xx
170
171 where
172 D:  Ver=x.xx Cls=xx(sssss) Sub=xx Prot=xx MxPS=dd #Cfgs=dd
173 |   |        |             |      |       |       |__NumberConfigurations
174 |   |        |             |      |       |__MaxPacketSize of Default Endpoint
175 |   |        |             |      |__DeviceProtocol
176 |   |        |             |__DeviceSubClass
177 |   |        |__DeviceClass
178 |   |__Device USB version
179 |__Device info tag #1
180
181 where
182 P:  Vendor=xxxx ProdID=xxxx Rev=xx.xx
183 |   |           |           |__Product revision number
184 |   |           |__Product ID code
185 |   |__Vendor ID code
186 |__Device info tag #2
187
188
189 String descriptor info:
190
191 S:  Manufacturer=ssss
192 |   |__Manufacturer of this device as read from the device.
193 |      For USB host controller drivers (virtual root hubs) this may
194 |      be omitted, or (for newer drivers) will identify the kernel
195 |      version and the driver which provides this hub emulation.
196 |__String info tag
197
198 S:  Product=ssss
199 |   |__Product description of this device as read from the device.
200 |      For older USB host controller drivers (virtual root hubs) this
201 |      indicates the driver; for newer ones, it's a product (and vendor)
202 |      description that often comes from the kernel's PCI ID database.
203 |__String info tag
204
205 S:  SerialNumber=ssss
206 |   |__Serial Number of this device as read from the device.
207 |      For USB host controller drivers (virtual root hubs) this is
208 |      some unique ID, normally a bus ID (address or slot name) that
209 |      can't be shared with any other device.
210 |__String info tag
211
212
213
214 Configuration descriptor info:
215
216 C:* #Ifs=dd Cfg#=dd Atr=xx MPwr=dddmA
217 | | |       |       |      |__MaxPower in mA
218 | | |       |       |__Attributes
219 | | |       |__ConfiguratioNumber
220 | | |__NumberOfInterfaces
221 | |__ "*" indicates the active configuration (others are " ")
222 |__Config info tag
223     
224     USB devices may have multiple configurations, each of which act
225     rather differently.  For example, a bus-powered configuration
226     might be much less capable than one that is self-powered.  Only
227     one device configuration can be active at a time; most devices
228     have only one configuration.
229
230     Each configuration consists of one or more interfaces.  Each
231     interface serves a distinct "function", which is typically bound
232     to a different USB device driver.  One common example is a USB
233     speaker with an audio interface for playback, and a HID interface
234     for use with software volume control.
235
236
237 Interface descriptor info (can be multiple per Config):
238
239 I:  If#=dd Alt=dd #EPs=dd Cls=xx(sssss) Sub=xx Prot=xx Driver=ssss
240 |   |      |      |       |             |      |       |__Driver name
241 |   |      |      |       |             |      |          or "(none)"
242 |   |      |      |       |             |      |__InterfaceProtocol
243 |   |      |      |       |             |__InterfaceSubClass
244 |   |      |      |       |__InterfaceClass
245 |   |      |      |__NumberOfEndpoints
246 |   |      |__AlternateSettingNumber
247 |   |__InterfaceNumber
248 |__Interface info tag
249
250     A given interface may have one or more "alternate" settings.
251     For example, default settings may not use more than a small
252     amount of periodic bandwidth.  To use significant fractions
253     of bus bandwidth, drivers must select a non-default altsetting.
254     
255     Only one setting for an interface may be active at a time, and
256     only one driver may bind to an interface at a time.  Most devices
257     have only one alternate setting per interface.
258
259
260 Endpoint descriptor info (can be multiple per Interface):
261
262 E:  Ad=xx(s) Atr=xx(ssss) MxPS=dddd Ivl=dddms
263 |   |        |            |         |__Interval (max) between transfers
264 |   |        |            |__EndpointMaxPacketSize
265 |   |        |__Attributes(EndpointType)
266 |   |__EndpointAddress(I=In,O=Out)
267 |__Endpoint info tag
268
269     The interval is nonzero for all periodic (interrupt or isochronous)
270     endpoints.  For high speed endpoints the transfer interval may be
271     measured in microseconds rather than milliseconds.
272
273     For high speed periodic endpoints, the "MaxPacketSize" reflects
274     the per-microframe data transfer size.  For "high bandwidth"
275     endpoints, that can reflect two or three packets (for up to
276     3KBytes every 125 usec) per endpoint.
277
278     With the Linux-USB stack, periodic bandwidth reservations use the
279     transfer intervals and sizes provided by URBs, which can be less
280     than those found in endpoint descriptor.
281
282
283 =======================================================================
284
285
286 If a user or script is interested only in Topology info, for
287 example, use something like "grep ^T: /proc/bus/usb/devices"
288 for only the Topology lines.  A command like
289 "grep -i ^[tdp]: /proc/bus/usb/devices" can be used to list
290 only the lines that begin with the characters in square brackets,
291 where the valid characters are TDPCIE.  With a slightly more able
292 script, it can display any selected lines (for example, only T, D,
293 and P lines) and change their output format.  (The "procusb"
294 Perl script is the beginning of this idea.  It will list only
295 selected lines [selected from TBDPSCIE] or "All" lines from
296 /proc/bus/usb/devices.)
297
298 The Topology lines can be used to generate a graphic/pictorial
299 of the USB devices on a system's root hub.  (See more below
300 on how to do this.)
301
302 The Interface lines can be used to determine what driver is
303 being used for each device.
304
305 The Configuration lines could be used to list maximum power
306 (in milliamps) that a system's USB devices are using.
307 For example, "grep ^C: /proc/bus/usb/devices".
308
309
310 Here's an example, from a system which has a UHCI root hub,
311 an external hub connected to the root hub, and a mouse and
312 a serial converter connected to the external hub.
313
314 T:  Bus=00 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#=  1 Spd=12  MxCh= 2
315 B:  Alloc= 28/900 us ( 3%), #Int=  2, #Iso=  0
316 D:  Ver= 1.00 Cls=09(hub  ) Sub=00 Prot=00 MxPS= 8 #Cfgs=  1
317 P:  Vendor=0000 ProdID=0000 Rev= 0.00
318 S:  Product=USB UHCI Root Hub
319 S:  SerialNumber=dce0
320 C:* #Ifs= 1 Cfg#= 1 Atr=40 MxPwr=  0mA
321 I:  If#= 0 Alt= 0 #EPs= 1 Cls=09(hub  ) Sub=00 Prot=00 Driver=hub
322 E:  Ad=81(I) Atr=03(Int.) MxPS=   8 Ivl=255ms
323 T:  Bus=00 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#=  2 Spd=12  MxCh= 4
324 D:  Ver= 1.00 Cls=09(hub  ) Sub=00 Prot=00 MxPS= 8 #Cfgs=  1
325 P:  Vendor=0451 ProdID=1446 Rev= 1.00
326 C:* #Ifs= 1 Cfg#= 1 Atr=e0 MxPwr=100mA
327 I:  If#= 0 Alt= 0 #EPs= 1 Cls=09(hub  ) Sub=00 Prot=00 Driver=hub
328 E:  Ad=81(I) Atr=03(Int.) MxPS=   1 Ivl=255ms
329 T:  Bus=00 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#=  3 Spd=1.5 MxCh= 0
330 D:  Ver= 1.00 Cls=00(>ifc ) Sub=00 Prot=00 MxPS= 8 #Cfgs=  1
331 P:  Vendor=04b4 ProdID=0001 Rev= 0.00
332 C:* #Ifs= 1 Cfg#= 1 Atr=80 MxPwr=100mA
333 I:  If#= 0 Alt= 0 #EPs= 1 Cls=03(HID  ) Sub=01 Prot=02 Driver=mouse
334 E:  Ad=81(I) Atr=03(Int.) MxPS=   3 Ivl= 10ms
335 T:  Bus=00 Lev=02 Prnt=02 Port=02 Cnt=02 Dev#=  4 Spd=12  MxCh= 0
336 D:  Ver= 1.00 Cls=00(>ifc ) Sub=00 Prot=00 MxPS= 8 #Cfgs=  1
337 P:  Vendor=0565 ProdID=0001 Rev= 1.08
338 S:  Manufacturer=Peracom Networks, Inc.
339 S:  Product=Peracom USB to Serial Converter
340 C:* #Ifs= 1 Cfg#= 1 Atr=a0 MxPwr=100mA
341 I:  If#= 0 Alt= 0 #EPs= 3 Cls=00(>ifc ) Sub=00 Prot=00 Driver=serial
342 E:  Ad=81(I) Atr=02(Bulk) MxPS=  64 Ivl= 16ms
343 E:  Ad=01(O) Atr=02(Bulk) MxPS=  16 Ivl= 16ms
344 E:  Ad=82(I) Atr=03(Int.) MxPS=   8 Ivl=  8ms
345
346
347 Selecting only the "T:" and "I:" lines from this (for example, by using
348 "procusb ti"), we have:
349
350 T:  Bus=00 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#=  1 Spd=12  MxCh= 2
351 T:  Bus=00 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#=  2 Spd=12  MxCh= 4
352 I:  If#= 0 Alt= 0 #EPs= 1 Cls=09(hub  ) Sub=00 Prot=00 Driver=hub
353 T:  Bus=00 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#=  3 Spd=1.5 MxCh= 0
354 I:  If#= 0 Alt= 0 #EPs= 1 Cls=03(HID  ) Sub=01 Prot=02 Driver=mouse
355 T:  Bus=00 Lev=02 Prnt=02 Port=02 Cnt=02 Dev#=  4 Spd=12  MxCh= 0
356 I:  If#= 0 Alt= 0 #EPs= 3 Cls=00(>ifc ) Sub=00 Prot=00 Driver=serial
357
358
359 Physically this looks like (or could be converted to):
360
361                       +------------------+
362                       |  PC/root_hub (12)|   Dev# = 1
363                       +------------------+   (nn) is Mbps.
364     Level 0           |  CN.0   |  CN.1  |   [CN = connector/port #]
365                       +------------------+
366                           /
367                          /
368             +-----------------------+
369   Level 1   | Dev#2: 4-port hub (12)|
370             +-----------------------+
371             |CN.0 |CN.1 |CN.2 |CN.3 |
372             +-----------------------+
373                 \           \____________________
374                  \_____                          \
375                        \                          \
376                +--------------------+      +--------------------+
377   Level 2      | Dev# 3: mouse (1.5)|      | Dev# 4: serial (12)|
378                +--------------------+      +--------------------+
379
380
381
382 Or, in a more tree-like structure (ports [Connectors] without
383 connections could be omitted):
384
385 PC:  Dev# 1, root hub, 2 ports, 12 Mbps
386 |_ CN.0:  Dev# 2, hub, 4 ports, 12 Mbps
387      |_ CN.0:  Dev #3, mouse, 1.5 Mbps
388      |_ CN.1:
389      |_ CN.2:  Dev #4, serial, 12 Mbps
390      |_ CN.3:
391 |_ CN.1:
392
393
394                          ### END ###