import of upstream 2.4.34.4 from kernel.org
[linux-2.4.git] / arch / ia64 / kernel / time.c
1 /*
2  * linux/arch/ia64/kernel/time.c
3  *
4  * Copyright (C) 1998-2001 Hewlett-Packard Co
5  * Copyright (C) 1998-2000 Stephane Eranian <eranian@hpl.hp.com>
6  * Copyright (C) 1999-2001 David Mosberger <davidm@hpl.hp.com>
7  * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
8  * Copyright (C) 1999-2000 VA Linux Systems
9  * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
10  */
11 #include <linux/config.h>
12
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/sched.h>
16 #include <linux/time.h>
17 #include <linux/interrupt.h>
18 #include <linux/efi.h>
19
20 #include <asm/delay.h>
21 #include <asm/hw_irq.h>
22 #include <asm/ptrace.h>
23 #include <asm/sal.h>
24 #include <asm/system.h>
25
26 extern rwlock_t xtime_lock;
27 extern unsigned long wall_jiffies;
28 extern unsigned long last_time_offset;
29
30 #ifdef CONFIG_IA64_DEBUG_IRQ
31
32 unsigned long last_cli_ip;
33
34 #endif
35
36 static void
37 do_profile (unsigned long ip)
38 {
39         extern unsigned long prof_cpu_mask;
40         extern char _stext;
41
42         if (!prof_buffer)
43                 return;
44
45         if (!((1UL << smp_processor_id()) & prof_cpu_mask))
46                 return;
47
48         ip -= (unsigned long) &_stext;
49         ip >>= prof_shift;
50         /*
51          * Don't ignore out-of-bounds IP values silently, put them into the last
52          * histogram slot, so if present, they will show up as a sharp peak.
53          */
54         if (ip > prof_len - 1)
55                 ip = prof_len - 1;
56
57         atomic_inc((atomic_t *) &prof_buffer[ip]);
58 }
59
60 /*
61  * Return the number of micro-seconds that elapsed since the last update to jiffy.  The
62  * xtime_lock must be at least read-locked when calling this routine.
63  */
64 static inline unsigned long
65 gettimeoffset (void)
66 {
67         unsigned long elapsed_cycles, lost = jiffies - wall_jiffies;
68         unsigned long now, last_tick;
69 #       define time_keeper_id   0       /* smp_processor_id() of time-keeper */
70
71         last_tick = (cpu_data(time_keeper_id)->itm_next
72                      - (lost + 1)*cpu_data(time_keeper_id)->itm_delta);
73
74         now = ia64_get_itc();
75         if ((long) (now - last_tick) < 0) {
76                 printk(KERN_ERR "CPU %d: now < last_tick (now=0x%lx,last_tick=0x%lx)!\n",
77                        smp_processor_id(), now, last_tick);
78                 return last_time_offset;
79         }
80         elapsed_cycles = now - last_tick;
81         return (elapsed_cycles*local_cpu_data->usec_per_cyc) >> IA64_USEC_PER_CYC_SHIFT;
82 }
83
84 void
85 do_settimeofday (struct timeval *tv)
86 {
87         write_lock_irq(&xtime_lock);
88         {
89                 /*
90                  * This is revolting. We need to set "xtime" correctly. However, the value
91                  * in this location is the value at the most recent update of wall time.
92                  * Discover what correction gettimeofday would have done, and then undo
93                  * it!
94                  */
95                 tv->tv_usec -= gettimeoffset();
96
97                 while (tv->tv_usec < 0) {
98                         tv->tv_usec += 1000000;
99                         tv->tv_sec--;
100                 }
101
102                 xtime = *tv;
103                 time_adjust = 0;                /* stop active adjtime() */
104                 time_status |= STA_UNSYNC;
105                 time_maxerror = NTP_PHASE_LIMIT;
106                 time_esterror = NTP_PHASE_LIMIT;
107         }
108         write_unlock_irq(&xtime_lock);
109 }
110
111 void
112 do_gettimeofday (struct timeval *tv)
113 {
114         unsigned long flags, usec, sec, old;
115
116         read_lock_irqsave(&xtime_lock, flags);
117         {
118                 usec = gettimeoffset();
119
120                 /*
121                  * Ensure time never goes backwards, even when ITC on different CPUs are
122                  * not perfectly synchronized.
123                  */
124                 do {
125                         old = last_time_offset;
126                         if (usec <= old) {
127                                 usec = old;
128                                 break;
129                         }
130                 } while (cmpxchg(&last_time_offset, old, usec) != old);
131
132                 sec = xtime.tv_sec;
133                 usec += xtime.tv_usec;
134         }
135         read_unlock_irqrestore(&xtime_lock, flags);
136
137         while (usec >= 1000000) {
138                 usec -= 1000000;
139                 ++sec;
140         }
141
142         tv->tv_sec = sec;
143         tv->tv_usec = usec;
144 }
145
146 static void
147 timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
148 {
149         unsigned long new_itm;
150
151         new_itm = local_cpu_data->itm_next;
152
153         if (!time_after(ia64_get_itc(), new_itm))
154                 printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
155                        ia64_get_itc(), new_itm);
156
157         while (1) {
158                 /*
159                  * Do kernel PC profiling here.  We multiply the instruction number by
160                  * four so that we can use a prof_shift of 2 to get instruction-level
161                  * instead of just bundle-level accuracy.
162                  */
163                 if (!user_mode(regs))
164                         do_profile(regs->cr_iip + 4*ia64_psr(regs)->ri);
165
166 #ifdef CONFIG_SMP
167                 smp_do_timer(regs);
168 #endif
169                 new_itm += local_cpu_data->itm_delta;
170
171                 if (smp_processor_id() == 0) {
172                         /*
173                          * Here we are in the timer irq handler. We have irqs locally
174                          * disabled, but we don't know if the timer_bh is running on
175                          * another CPU. We need to avoid to SMP race by acquiring the
176                          * xtime_lock.
177                          */
178                         write_lock(&xtime_lock);
179                         do_timer(regs);
180                         local_cpu_data->itm_next = new_itm;
181                         write_unlock(&xtime_lock);
182                 } else
183                         local_cpu_data->itm_next = new_itm;
184
185                 if (time_after(new_itm, ia64_get_itc()))
186                         break;
187         }
188
189         do {
190             /*
191              * If we're too close to the next clock tick for comfort, we increase the
192              * saftey margin by intentionally dropping the next tick(s).  We do NOT update
193              * itm.next because that would force us to call do_timer() which in turn would
194              * let our clock run too fast (with the potentially devastating effect of
195              * losing monotony of time).
196              */
197             while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
198               new_itm += local_cpu_data->itm_delta;
199             ia64_set_itm(new_itm);
200             /* double check, in case we got hit by a (slow) PMI: */
201         } while (time_after_eq(ia64_get_itc(), new_itm));
202 }
203
204 /*
205  * Encapsulate access to the itm structure for SMP.
206  */
207 void __init
208 ia64_cpu_local_tick (void)
209 {
210         int cpu = smp_processor_id();
211         unsigned long shift = 0, delta;
212
213         /* arrange for the cycle counter to generate a timer interrupt: */
214         ia64_set_itv(IA64_TIMER_VECTOR);
215
216         delta = local_cpu_data->itm_delta;
217         /*
218          * Stagger the timer tick for each CPU so they don't occur all at (almost) the
219          * same time:
220          */
221         if (cpu) {
222                 unsigned long hi = 1UL << ia64_fls(cpu);
223                 shift = (2*(cpu - hi) + 1) * delta/hi/2;
224         }
225         local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
226         ia64_set_itm(local_cpu_data->itm_next);
227 }
228
229 void __init
230 ia64_init_itm (void)
231 {
232         unsigned long platform_base_freq, itc_freq, drift;
233         struct pal_freq_ratio itc_ratio, proc_ratio;
234         long status;
235
236         /*
237          * According to SAL v2.6, we need to use a SAL call to determine the platform base
238          * frequency and then a PAL call to determine the frequency ratio between the ITC
239          * and the base frequency.
240          */
241         status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM, &platform_base_freq, &drift);
242         if (status != 0) {
243                 printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
244         } else {
245                 status = ia64_pal_freq_ratios(&proc_ratio, 0, &itc_ratio);
246                 if (status != 0)
247                         printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
248         }
249         if (status != 0) {
250                 /* invent "random" values */
251                 printk(KERN_ERR
252                        "SAL/PAL failed to obtain frequency info---inventing reasonably values\n");
253                 platform_base_freq = 100000000;
254                 itc_ratio.num = 3;
255                 itc_ratio.den = 1;
256         }
257         if (platform_base_freq < 40000000) {
258                 printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
259                        platform_base_freq);
260                 platform_base_freq = 75000000;
261         }
262         if (!proc_ratio.den)
263                 proc_ratio.den = 1;     /* avoid division by zero */
264         if (!itc_ratio.den)
265                 itc_ratio.den = 1;      /* avoid division by zero */
266
267         itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
268         local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
269         printk(KERN_INFO "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%lu/%lu, "
270                "ITC freq=%lu.%03luMHz\n", smp_processor_id(),
271                platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
272                itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
273
274         local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
275         local_cpu_data->itc_freq = itc_freq;
276         local_cpu_data->cyc_per_usec = (itc_freq + 500000) / 1000000;
277         local_cpu_data->usec_per_cyc = ((1000000UL<<IA64_USEC_PER_CYC_SHIFT)
278                                         + itc_freq/2)/itc_freq;
279
280         /* Setup the CPU local timer tick */
281         ia64_cpu_local_tick();
282 }
283
284 static struct irqaction timer_irqaction = {
285         .handler =      timer_interrupt,
286         .flags =        SA_INTERRUPT,
287         .name =         "timer"
288 };
289
290 void __init
291 time_init (void)
292 {
293         register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
294         efi_gettimeofday((struct timeval *) &xtime);
295         ia64_init_itm();
296 }