cleanup
[linux-2.4.git] / arch / ppc / platforms / pmac_smp.c
1 /*
2  * SMP support for power macintosh.
3  *
4  * We support both the old "powersurge" SMP architecture
5  * and the current Core99 (G4 PowerMac) machines.
6  *
7  * Note that we don't support the very first rev. of
8  * Apple/DayStar 2 CPUs board, the one with the funky
9  * watchdog. Hopefully, none of these should be there except
10  * maybe internally to Apple. I should probably still add some
11  * code to detect this card though and disable SMP. --BenH.
12  *
13  * Support Macintosh G4 SMP by Troy Benjegerdes (hozer@drgw.net)
14  * and Ben Herrenschmidt <benh@kernel.crashing.org>.
15  *
16  * Support for DayStar quad CPU cards
17  * Copyright (C) XLR8, Inc. 1994-2000
18  *
19  *  This program is free software; you can redistribute it and/or
20  *  modify it under the terms of the GNU General Public License
21  *  as published by the Free Software Foundation; either version
22  *  2 of the License, or (at your option) any later version.
23  */
24 #include <linux/config.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/smp.h>
28 #include <linux/smp_lock.h>
29 #include <linux/interrupt.h>
30 #include <linux/kernel_stat.h>
31 #include <linux/delay.h>
32 #define __KERNEL_SYSCALLS__
33 #include <linux/unistd.h>
34 #include <linux/init.h>
35 #include <linux/spinlock.h>
36 #include <linux/stringify.h>
37
38 #include <asm/ptrace.h>
39 #include <asm/atomic.h>
40 #include <asm/irq.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/hardirq.h>
44 #include <asm/softirq.h>
45 #include <asm/sections.h>
46 #include <asm/io.h>
47 #include <asm/prom.h>
48 #include <asm/smp.h>
49 #include <asm/residual.h>
50 #include <asm/machdep.h>
51 #include <asm/pmac_feature.h>
52 #include <asm/time.h>
53 #include <asm/open_pic.h>
54 #include <asm/processor.h>
55
56 /*
57  * Powersurge (old powermac SMP) support.
58  */
59
60 extern void __secondary_start_psurge(void);
61 extern void __secondary_start_psurge2(void);    /* Temporary horrible hack */
62 extern void __secondary_start_psurge3(void);    /* Temporary horrible hack */
63
64 /* Addresses for powersurge registers */
65 #define HAMMERHEAD_BASE         0xf8000000
66 #define HHEAD_CONFIG            0x90
67 #define HHEAD_SEC_INTR          0xc0
68
69 /* register for interrupting the primary processor on the powersurge */
70 /* N.B. this is actually the ethernet ROM! */
71 #define PSURGE_PRI_INTR         0xf3019000
72
73 /* register for storing the start address for the secondary processor */
74 /* N.B. this is the PCI config space address register for the 1st bridge */
75 #define PSURGE_START            0xf2800000
76
77 /* Daystar/XLR8 4-CPU card */
78 #define PSURGE_QUAD_REG_ADDR    0xf8800000
79
80 #define PSURGE_QUAD_IRQ_SET     0
81 #define PSURGE_QUAD_IRQ_CLR     1
82 #define PSURGE_QUAD_IRQ_PRIMARY 2
83 #define PSURGE_QUAD_CKSTOP_CTL  3
84 #define PSURGE_QUAD_PRIMARY_ARB 4
85 #define PSURGE_QUAD_BOARD_ID    6
86 #define PSURGE_QUAD_WHICH_CPU   7
87 #define PSURGE_QUAD_CKSTOP_RDBK 8
88 #define PSURGE_QUAD_RESET_CTL   11
89
90 #define PSURGE_QUAD_OUT(r, v)   (out_8(quad_base + ((r) << 4) + 4, (v)))
91 #define PSURGE_QUAD_IN(r)       (in_8(quad_base + ((r) << 4) + 4) & 0x0f)
92 #define PSURGE_QUAD_BIS(r, v)   (PSURGE_QUAD_OUT((r), PSURGE_QUAD_IN(r) | (v)))
93 #define PSURGE_QUAD_BIC(r, v)   (PSURGE_QUAD_OUT((r), PSURGE_QUAD_IN(r) & ~(v)))
94
95 /* virtual addresses for the above */
96 static volatile u8 *hhead_base;
97 static volatile u8 *quad_base;
98 static volatile u32 *psurge_pri_intr;
99 static volatile u8 *psurge_sec_intr;
100 static volatile u32 *psurge_start;
101
102 /* values for psurge_type */
103 #define PSURGE_NONE             -1
104 #define PSURGE_DUAL             0
105 #define PSURGE_QUAD_OKEE        1
106 #define PSURGE_QUAD_COTTON      2
107 #define PSURGE_QUAD_ICEGRASS    3
108
109 /* what sort of powersurge board we have */
110 static int psurge_type = PSURGE_NONE;
111
112 volatile static long int core99_l2_cache;
113 volatile static long int core99_l3_cache;
114
115 static void __init
116 core99_init_caches(void)
117 {
118         int cpu = smp_processor_id();
119
120         if (!(cur_cpu_spec[0]->cpu_features & CPU_FTR_L2CR))
121                 return;
122
123         if (cpu == 0){
124                 core99_l2_cache = _get_L2CR();
125                 printk("CPU0: L2CR is %lx\n", core99_l2_cache);
126         } else {
127                 printk("CPU%d: L2CR was %lx\n", cpu, _get_L2CR());
128                 _set_L2CR(0);
129                 _set_L2CR(core99_l2_cache);
130                 printk("CPU%d: L2CR set to %lx\n", cpu, core99_l2_cache);
131         }
132
133         if (!(cur_cpu_spec[0]->cpu_features & CPU_FTR_L3CR))
134                 return;
135
136         if (cpu == 0){
137                 core99_l3_cache = _get_L3CR();
138                 printk("CPU0: L3CR is %lx\n", core99_l3_cache);
139         } else {
140                 printk("CPU%d: L3CR was %lx\n", cpu, _get_L3CR());
141                 _set_L3CR(0);
142                 _set_L3CR(core99_l3_cache);
143                 printk("CPU%d: L3CR set to %lx\n", cpu, core99_l3_cache);
144         }
145 }
146
147 /*
148  * Set and clear IPIs for powersurge.
149  */
150 static inline void psurge_set_ipi(int cpu)
151 {
152         if (psurge_type == PSURGE_NONE)
153                 return;
154         if (cpu == 0)
155                 in_be32(psurge_pri_intr);
156         else if (psurge_type == PSURGE_DUAL)
157                 out_8(psurge_sec_intr, 0);
158         else
159                 PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_SET, 1 << cpu);
160 }
161
162 static inline void psurge_clr_ipi(int cpu)
163 {
164         if (cpu > 0) {
165                 switch(psurge_type) {
166                 case PSURGE_DUAL:
167                         out_8(psurge_sec_intr, ~0);
168                 case PSURGE_NONE:
169                         break;
170                 default:
171                         PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_CLR, 1 << cpu);
172                 }
173         }
174 }
175
176 /*
177  * On powersurge (old SMP powermac architecture) we don't have
178  * separate IPIs for separate messages like openpic does.  Instead
179  * we have a bitmap for each processor, where a 1 bit means that
180  * the corresponding message is pending for that processor.
181  * Ideally each cpu's entry would be in a different cache line.
182  *  -- paulus.
183  */
184 static unsigned long psurge_smp_message[NR_CPUS];
185
186 void __pmac
187 psurge_smp_message_recv(struct pt_regs *regs)
188 {
189         int cpu = smp_processor_id();
190         int msg;
191
192         /* clear interrupt */
193         psurge_clr_ipi(cpu);
194
195         if (smp_num_cpus < 2)
196                 return;
197
198         /* make sure there is a message there */
199         for (msg = 0; msg < 4; msg++)
200                 if (test_and_clear_bit(msg, &psurge_smp_message[cpu]))
201                         smp_message_recv(msg, regs);
202 }
203
204 void __pmac
205 psurge_primary_intr(int irq, void *d, struct pt_regs *regs)
206 {
207         psurge_smp_message_recv(regs);
208 }
209
210 static void __pmac
211 smp_psurge_message_pass(int target, int msg, unsigned long data, int wait)
212 {
213         int i;
214
215         if (smp_num_cpus < 2)
216                 return;
217
218         for (i = 0; i < smp_num_cpus; i++) {
219                 if (target == MSG_ALL
220                     || (target == MSG_ALL_BUT_SELF && i != smp_processor_id())
221                     || target == i) {
222                         set_bit(msg, &psurge_smp_message[i]);
223                         psurge_set_ipi(i);
224                 }
225         }
226 }
227
228 /*
229  * Determine a quad card presence. We read the board ID register, we
230  * force the data bus to change to something else, and we read it again.
231  * It it's stable, then the register probably exist (ugh !)
232  */
233 static int __init psurge_quad_probe(void)
234 {
235         int type;
236         unsigned int i;
237
238         type = PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID);
239         if (type < PSURGE_QUAD_OKEE || type > PSURGE_QUAD_ICEGRASS
240             || type != PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID))
241                 return PSURGE_DUAL;
242
243         /* looks OK, try a slightly more rigorous test */
244         /* bogus is not necessarily cacheline-aligned,
245            though I don't suppose that really matters.  -- paulus */
246         for (i = 0; i < 100; i++) {
247                 volatile u32 bogus[8];
248                 bogus[(0+i)%8] = 0x00000000;
249                 bogus[(1+i)%8] = 0x55555555;
250                 bogus[(2+i)%8] = 0xFFFFFFFF;
251                 bogus[(3+i)%8] = 0xAAAAAAAA;
252                 bogus[(4+i)%8] = 0x33333333;
253                 bogus[(5+i)%8] = 0xCCCCCCCC;
254                 bogus[(6+i)%8] = 0xCCCCCCCC;
255                 bogus[(7+i)%8] = 0x33333333;
256                 wmb();
257                 asm volatile("dcbf 0,%0" : : "r" (bogus) : "memory");
258                 mb();
259                 if (type != PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID))
260                         return PSURGE_DUAL;
261         }
262         return type;
263 }
264
265 static void __init psurge_quad_init(void)
266 {
267         int procbits;
268
269         if (ppc_md.progress) ppc_md.progress("psurge_quad_init", 0x351);
270         procbits = ~PSURGE_QUAD_IN(PSURGE_QUAD_WHICH_CPU);
271         if (psurge_type == PSURGE_QUAD_ICEGRASS)
272                 PSURGE_QUAD_BIS(PSURGE_QUAD_RESET_CTL, procbits);
273         else
274                 PSURGE_QUAD_BIC(PSURGE_QUAD_CKSTOP_CTL, procbits);
275         mdelay(33);
276         out_8(psurge_sec_intr, ~0);
277         PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_CLR, procbits);
278         PSURGE_QUAD_BIS(PSURGE_QUAD_RESET_CTL, procbits);
279         if (psurge_type != PSURGE_QUAD_ICEGRASS)
280                 PSURGE_QUAD_BIS(PSURGE_QUAD_CKSTOP_CTL, procbits);
281         PSURGE_QUAD_BIC(PSURGE_QUAD_PRIMARY_ARB, procbits);
282         mdelay(33);
283         PSURGE_QUAD_BIC(PSURGE_QUAD_RESET_CTL, procbits);
284         mdelay(33);
285         PSURGE_QUAD_BIS(PSURGE_QUAD_PRIMARY_ARB, procbits);
286         mdelay(33);
287 }
288
289 static int __init smp_psurge_probe(void)
290 {
291         int i, ncpus;
292
293         /* We don't do SMP on the PPC601 -- paulus */
294         if (PVR_VER(mfspr(PVR)) == 1)
295                 return 1;
296
297         /*
298          * The powersurge cpu board can be used in the generation
299          * of powermacs that have a socket for an upgradeable cpu card,
300          * including the 7500, 8500, 9500, 9600.
301          * The device tree doesn't tell you if you have 2 cpus because
302          * OF doesn't know anything about the 2nd processor.
303          * Instead we look for magic bits in magic registers,
304          * in the hammerhead memory controller in the case of the
305          * dual-cpu powersurge board.  -- paulus.
306          */
307         if (find_devices("hammerhead") == NULL)
308                 return 1;
309
310         hhead_base = ioremap(HAMMERHEAD_BASE, 0x800);
311         quad_base = ioremap(PSURGE_QUAD_REG_ADDR, 1024);
312         psurge_sec_intr = hhead_base + HHEAD_SEC_INTR;
313
314         psurge_type = psurge_quad_probe();
315         if (psurge_type != PSURGE_DUAL) {
316                 psurge_quad_init();
317                 /* All released cards using this HW design have 4 CPUs */
318                 ncpus = 4;
319         } else {
320                 iounmap((void *) quad_base);
321                 if ((in_8(hhead_base + HHEAD_CONFIG) & 0x02) == 0) {
322                         /* not a dual-cpu card */
323                         iounmap((void *) hhead_base);
324                         psurge_type = PSURGE_NONE;
325                         return 1;
326                 }
327                 ncpus = 2;
328         }
329
330         psurge_start = ioremap(PSURGE_START, 4);
331         psurge_pri_intr = ioremap(PSURGE_PRI_INTR, 4);
332
333         /* this is not actually strictly necessary -- paulus. */
334         for (i = 1; i < ncpus; ++i)
335                 smp_hw_index[i] = i;
336
337         if (ppc_md.progress) ppc_md.progress("smp_psurge_probe - done", 0x352);
338
339         return ncpus;
340 }
341
342 static void __init smp_psurge_kick_cpu(int nr)
343 {
344         void (*start)(void) = __secondary_start_psurge;
345         unsigned long a;
346
347         /* may need to flush here if secondary bats aren't setup */
348         for (a = KERNELBASE; a < KERNELBASE + 0x800000; a += 32)
349                 asm volatile("dcbf 0,%0" : : "r" (a) : "memory");
350         asm volatile("sync");
351
352         if (ppc_md.progress) ppc_md.progress("smp_psurge_kick_cpu", 0x353);
353
354         /* setup entry point of secondary processor */
355         switch (nr) {
356         case 2:
357                 start = __secondary_start_psurge2;
358                 break;
359         case 3:
360                 start = __secondary_start_psurge3;
361                 break;
362         }
363
364         out_be32(psurge_start, __pa(start));
365         mb();
366
367         psurge_set_ipi(nr);
368         udelay(10);
369         psurge_clr_ipi(nr);
370
371         if (ppc_md.progress) ppc_md.progress("smp_psurge_kick_cpu - done", 0x354);
372 }
373
374 /*
375  * With the dual-cpu powersurge board, the decrementers and timebases
376  * of both cpus are frozen after the secondary cpu is started up,
377  * until we give the secondary cpu another interrupt.  This routine
378  * uses this to get the timebases synchronized.
379  *  -- paulus.
380  */
381 static void __init psurge_dual_sync_tb(int cpu_nr)
382 {
383         static volatile int sec_tb_reset = 0;
384         int t;
385
386         set_dec(tb_ticks_per_jiffy);
387         set_tb(0, 0);
388         last_jiffy_stamp(cpu_nr) = 0;
389
390         if (cpu_nr > 0) {
391                 mb();
392                 sec_tb_reset = 1;
393                 return;
394         }
395
396         /* wait for the secondary to have reset its TB before proceeding */
397         for (t = 10000000; t > 0 && !sec_tb_reset; --t)
398                 ;
399
400         /* now interrupt the secondary, starting both TBs */
401         psurge_set_ipi(1);
402
403         smp_tb_synchronized = 1;
404 }
405
406 static void __init
407 smp_psurge_setup_cpu(int cpu_nr)
408 {
409
410         if (cpu_nr == 0) {
411                 /* If we failed to start the second CPU, we should still
412                  * send it an IPI to start the timebase & DEC or we might
413                  * have them stuck.
414                  */
415                 if (smp_num_cpus < 2)
416                         goto sync_tb;
417                 /* reset the entry point so if we get another intr we won't
418                  * try to startup again */
419                 out_be32(psurge_start, 0x100);
420                 if (request_irq(30, psurge_primary_intr, SA_INTERRUPT, "primary IPI", 0))
421                         printk(KERN_ERR "Couldn't get primary IPI interrupt");
422         }
423 sync_tb:
424         if (psurge_type == PSURGE_DUAL)
425                 psurge_dual_sync_tb(cpu_nr);
426 }
427
428 static int __init
429 smp_core99_probe(void)
430 {
431         struct device_node *cpus;
432         int i, ncpus = 1;
433         extern int powersave_nap;
434
435         if (ppc_md.progress) ppc_md.progress("smp_core99_probe", 0x345);
436         cpus = find_type_devices("cpu");
437         if (cpus)
438                 while ((cpus = cpus->next) != NULL)
439                         ++ncpus;
440         printk("smp_core99_probe: found %d cpus\n", ncpus);
441         if (ncpus > 1) {
442                 openpic_request_IPIs();
443                 for (i = 1; i < ncpus; ++i)
444                         smp_hw_index[i] = i;
445 #ifdef CONFIG_6xx       /* XXX */
446                 powersave_nap = 0;
447 #endif
448                 /* Read cache setting of CPU 0 */
449                 core99_init_caches();
450         }
451
452         return ncpus;
453 }
454
455 static void __init
456 smp_core99_kick_cpu(int nr)
457 {
458         unsigned long save_vector, new_vector;
459         unsigned long flags;
460
461         volatile unsigned long *vector
462                  = ((volatile unsigned long *)(KERNELBASE+0x100));
463         if (nr < 1 || nr > 3)
464                 return;
465         if (ppc_md.progress) ppc_md.progress("smp_core99_kick_cpu", 0x346);
466
467         local_irq_save(flags);
468         local_irq_disable();
469
470         /* Save reset vector */
471         save_vector = *vector;
472
473         /* Setup fake reset vector that does
474          *   b __secondary_start_psurge - KERNELBASE
475          */
476         switch(nr) {
477                 case 1:
478                         new_vector = (unsigned long)__secondary_start_psurge;
479                         break;
480                 case 2:
481                         new_vector = (unsigned long)__secondary_start_psurge2;
482                         break;
483                 case 3:
484                         new_vector = (unsigned long)__secondary_start_psurge3;
485                         break;
486         }
487         *vector = 0x48000002 + new_vector - KERNELBASE;
488
489         /* flush data cache and inval instruction cache */
490         flush_icache_range((unsigned long) vector, (unsigned long) vector + 4);
491
492         /* Put some life in our friend */
493         pmac_call_feature(PMAC_FTR_RESET_CPU, NULL, nr, 0);
494
495         /* FIXME: We wait a bit for the CPU to take the exception, I should
496          * instead wait for the entry code to set something for me. Well,
497          * ideally, all that crap will be done in prom.c and the CPU left
498          * in a RAM-based wait loop like CHRP.
499          */
500         mdelay(1);
501
502         /* Restore our exception vector */
503         *vector = save_vector;
504         flush_icache_range((unsigned long) vector, (unsigned long) vector + 4);
505
506         local_irq_restore(flags);
507         if (ppc_md.progress) ppc_md.progress("smp_core99_kick_cpu done", 0x347);
508 }
509
510 static void __init
511 smp_core99_setup_cpu(int cpu_nr)
512 {
513
514         /* Setup some critical registers
515          * and apply cache setting from CPU 0
516          */
517         if (cpu_nr != 0)
518                 core99_init_caches();
519
520         /* Setup openpic */
521         do_openpic_setup_cpu();
522
523         /* Setup L2/L3 */
524         if (cpu_nr == 0)
525                 if (ppc_md.progress) ppc_md.progress("core99_setup_cpu 0 done", 0x349);
526 }
527
528 /* PowerSurge-style Macs */
529 struct smp_ops_t psurge_smp_ops __pmacdata = {
530         .message_pass   = smp_psurge_message_pass,
531         .probe          = smp_psurge_probe,
532         .kick_cpu       = smp_psurge_kick_cpu,
533         .setup_cpu      = smp_psurge_setup_cpu,
534 };
535
536 /* Core99 Macs (dual G4s) */
537 struct smp_ops_t core99_smp_ops __pmacdata = {
538         .message_pass   = smp_openpic_message_pass,
539         .probe          = smp_core99_probe,
540         .kick_cpu       = smp_core99_kick_cpu,
541         .setup_cpu      = smp_core99_setup_cpu,
542 };