import of upstream 2.4.34.4 from kernel.org
[linux-2.4.git] / arch / sparc / mm / srmmu.c
1 /* $Id: srmmu.c,v 1.233 2001/11/13 00:49:27 davem Exp $
2  * srmmu.c:  SRMMU specific routines for memory management.
3  *
4  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
5  * Copyright (C) 1995 Pete Zaitcev
6  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9  */
10
11 #include <linux/config.h>
12 #include <linux/kernel.h>
13 #include <linux/mm.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/pagemap.h>
17 #include <linux/init.h>
18 #include <linux/blk.h>
19 #include <linux/spinlock.h>
20 #include <linux/bootmem.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23
24 #include <asm/page.h>
25 #include <asm/pgalloc.h>
26 #include <asm/pgtable.h>
27 #include <asm/io.h>
28 #include <asm/kdebug.h>
29 #include <asm/vaddrs.h>
30 #include <asm/traps.h>
31 #include <asm/smp.h>
32 #include <asm/mbus.h>
33 #include <asm/cache.h>
34 #include <asm/oplib.h>
35 #include <asm/sbus.h>
36 #include <asm/asi.h>
37 #include <asm/msi.h>
38 #include <asm/a.out.h>
39 #include <asm/mmu_context.h>
40 #include <asm/io-unit.h>
41
42 /* Now the cpu specific definitions. */
43 #include <asm/viking.h>
44 #include <asm/mxcc.h>
45 #include <asm/ross.h>
46 #include <asm/tsunami.h>
47 #include <asm/swift.h>
48 #include <asm/turbosparc.h>
49
50 #include <asm/btfixup.h>
51
52 enum mbus_module srmmu_modtype;
53 unsigned int hwbug_bitmask;
54 int vac_cache_size;
55 int vac_line_size;
56
57 extern struct resource sparc_iomap;
58
59 extern unsigned long last_valid_pfn;
60
61 extern unsigned long page_kernel;
62
63 pgd_t *srmmu_swapper_pg_dir;
64
65 #ifdef CONFIG_SMP
66 #define FLUSH_BEGIN(mm)
67 #define FLUSH_END
68 #else
69 #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
70 #define FLUSH_END       }
71 #endif
72
73 BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
74 #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
75
76 int flush_page_for_dma_global = 1;
77
78 #ifdef CONFIG_SMP
79 BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
80 #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
81 #endif
82
83 char *srmmu_name;
84
85 ctxd_t *srmmu_ctx_table_phys;
86 ctxd_t *srmmu_context_table;
87
88 int viking_mxcc_present;
89 static spinlock_t srmmu_context_spinlock = SPIN_LOCK_UNLOCKED;
90
91 int is_hypersparc;
92
93 /*
94  * In general all page table modifications should use the V8 atomic
95  * swap instruction.  This insures the mmu and the cpu are in sync
96  * with respect to ref/mod bits in the page tables.
97  */
98 static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
99 {
100         __asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "0" (value), "r" (addr));
101         return value;
102 }
103
104 static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
105 {
106         srmmu_swap((unsigned long *)ptep, pte_val(pteval));
107 }
108
109 /* The very generic SRMMU page table operations. */
110 static inline int srmmu_device_memory(unsigned long x)
111 {
112         return ((x & 0xF0000000) != 0);
113 }
114
115 int srmmu_cache_pagetables;
116
117 /* these will be initialized in srmmu_nocache_calcsize() */
118 int srmmu_nocache_npages;
119 unsigned long srmmu_nocache_size;
120 unsigned long srmmu_nocache_end;
121 unsigned long pkmap_base;
122 unsigned long pkmap_base_end;
123 unsigned long srmmu_nocache_bitmap_size;
124 extern unsigned long fix_kmap_begin;
125 extern unsigned long fix_kmap_end;
126
127 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
128
129 /* The context table is a nocache user with the biggest alignment needs. */
130 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
131
132 void *srmmu_nocache_pool;
133 void *srmmu_nocache_bitmap;
134 int srmmu_nocache_low;
135 int srmmu_nocache_used;
136 static spinlock_t srmmu_nocache_spinlock = SPIN_LOCK_UNLOCKED;
137
138 /* This makes sense. Honest it does - Anton */
139 #define __nocache_pa(VADDR) (((unsigned long)VADDR) - SRMMU_NOCACHE_VADDR + __pa((unsigned long)srmmu_nocache_pool))
140 #define __nocache_va(PADDR) (__va((unsigned long)PADDR) - (unsigned long)srmmu_nocache_pool + SRMMU_NOCACHE_VADDR)
141 #define __nocache_fix(VADDR) __va(__nocache_pa(VADDR))
142
143 static inline unsigned long srmmu_pgd_page(pgd_t pgd)
144 { return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
145
146 static inline unsigned long srmmu_pmd_page(pmd_t pmd)
147 { return srmmu_device_memory(pmd_val(pmd))?~0:(unsigned long)__nocache_va((pmd_val(pmd) & SRMMU_PTD_PMASK) << 4); }
148
149 static inline struct page *srmmu_pte_page(pte_t pte)
150 { return (mem_map + (unsigned long)(srmmu_device_memory(pte_val(pte))?~0:(((pte_val(pte) & SRMMU_PTE_PMASK) << 4) >> PAGE_SHIFT))); }
151
152 static inline int srmmu_pte_none(pte_t pte)
153 { return !(pte_val(pte) & 0xFFFFFFF); }
154
155 static inline int srmmu_pte_present(pte_t pte)
156 { return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
157
158 static inline void srmmu_pte_clear(pte_t *ptep)
159 { srmmu_set_pte(ptep, __pte(0)); }
160
161 static inline int srmmu_pmd_none(pmd_t pmd)
162 { return !(pmd_val(pmd) & 0xFFFFFFF); }
163
164 static inline int srmmu_pmd_bad(pmd_t pmd)
165 { return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
166
167 static inline int srmmu_pmd_present(pmd_t pmd)
168 { return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
169
170 static inline void srmmu_pmd_clear(pmd_t *pmdp)
171 { srmmu_set_pte((pte_t *)pmdp, __pte(0)); }
172
173 static inline int srmmu_pgd_none(pgd_t pgd)          
174 { return !(pgd_val(pgd) & 0xFFFFFFF); }
175
176 static inline int srmmu_pgd_bad(pgd_t pgd)
177 { return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
178
179 static inline int srmmu_pgd_present(pgd_t pgd)
180 { return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
181
182 static inline void srmmu_pgd_clear(pgd_t * pgdp)
183 { srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
184
185 static inline int srmmu_pte_write(pte_t pte)
186 { return pte_val(pte) & SRMMU_WRITE; }
187
188 static inline int srmmu_pte_dirty(pte_t pte)
189 { return pte_val(pte) & SRMMU_DIRTY; }
190
191 static inline int srmmu_pte_young(pte_t pte)
192 { return pte_val(pte) & SRMMU_REF; }
193
194 static inline pte_t srmmu_pte_wrprotect(pte_t pte)
195 { return __pte(pte_val(pte) & ~SRMMU_WRITE);}
196
197 static inline pte_t srmmu_pte_mkclean(pte_t pte)
198 { return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
199
200 static inline pte_t srmmu_pte_mkold(pte_t pte)
201 { return __pte(pte_val(pte) & ~SRMMU_REF);}
202
203 static inline pte_t srmmu_pte_mkwrite(pte_t pte)
204 { return __pte(pte_val(pte) | SRMMU_WRITE);}
205
206 static inline pte_t srmmu_pte_mkdirty(pte_t pte)
207 { return __pte(pte_val(pte) | SRMMU_DIRTY);}
208
209 static inline pte_t srmmu_pte_mkyoung(pte_t pte)
210 { return __pte(pte_val(pte) | SRMMU_REF);}
211
212 /*
213  * Conversion functions: convert a page and protection to a page entry,
214  * and a page entry and page directory to the page they refer to.
215  */
216 static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
217 { return __pte((((page - mem_map) << PAGE_SHIFT) >> 4) | pgprot_val(pgprot)); }
218
219 static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
220 { return __pte(((page) >> 4) | pgprot_val(pgprot)); }
221
222 static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
223 { return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
224
225 /* XXX should we hyper_flush_whole_icache here - Anton */
226 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
227 { srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
228
229 static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
230 { srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
231
232 static inline void srmmu_pmd_set(pmd_t * pmdp, pte_t * ptep)
233 { srmmu_set_pte((pte_t *)pmdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) ptep) >> 4))); }
234
235 static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
236 { return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
237
238 /* to find an entry in a top-level page table... */
239 extern inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
240 { return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
241
242 /* Find an entry in the second-level page table.. */
243 static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
244 { return (pmd_t *) srmmu_pgd_page(*dir) + ((address >> SRMMU_PMD_SHIFT) & (SRMMU_PTRS_PER_PMD - 1)); }
245
246 /* Find an entry in the third-level page table.. */ 
247 static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
248 { return (pte_t *) srmmu_pmd_page(*dir) + ((address >> PAGE_SHIFT) & (SRMMU_PTRS_PER_PTE - 1)); }
249
250 unsigned long __srmmu_get_nocache(int size, int align)
251 {
252         int offset = srmmu_nocache_low;
253         int i;
254         unsigned long va_tmp, phys_tmp;
255         int lowest_failed = 0;
256
257         size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
258
259         spin_lock(&srmmu_nocache_spinlock);
260
261 repeat:
262         offset = find_next_zero_bit(srmmu_nocache_bitmap, srmmu_nocache_bitmap_size, offset);
263
264         /* we align on physical address */
265         if (align) {
266                 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
267                 va_tmp = (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
268                 phys_tmp = (__nocache_pa(va_tmp) + align - 1) & ~(align - 1);
269                 va_tmp = (unsigned long)__nocache_va(phys_tmp);
270                 offset = (va_tmp - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
271         }
272
273         if ((srmmu_nocache_bitmap_size - offset) < size) {
274                 printk("Run out of nocached RAM!\n");
275                 spin_unlock(&srmmu_nocache_spinlock);
276                 return 0;
277         }
278
279         i = 0;
280         while(i < size) {
281                 if (test_bit(offset + i, srmmu_nocache_bitmap)) {
282                         lowest_failed = 1;
283                         offset = offset + i + 1;
284                         goto repeat;
285                 }
286                 i++;
287         }
288
289         i = 0;
290         while(i < size) {
291                 set_bit(offset + i, srmmu_nocache_bitmap);
292                 i++;
293                 srmmu_nocache_used++;
294         }
295
296         if (!lowest_failed && ((align >> SRMMU_NOCACHE_BITMAP_SHIFT) <= 1) && (offset > srmmu_nocache_low))
297                 srmmu_nocache_low = offset;
298
299         spin_unlock(&srmmu_nocache_spinlock);
300
301         return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
302 }
303
304 unsigned inline long srmmu_get_nocache(int size, int align)
305 {
306         unsigned long tmp;
307
308         tmp = __srmmu_get_nocache(size, align);
309
310         if (tmp)
311                 memset((void *)tmp, 0, size);
312
313         return tmp;
314 }
315
316 void srmmu_free_nocache(unsigned long vaddr, int size)
317 {
318         int offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
319
320         size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
321
322         spin_lock(&srmmu_nocache_spinlock);
323
324         while(size--) {
325                 clear_bit(offset + size, srmmu_nocache_bitmap);
326                 srmmu_nocache_used--;
327         }
328
329         if (offset < srmmu_nocache_low)
330                 srmmu_nocache_low = offset;
331
332         spin_unlock(&srmmu_nocache_spinlock);
333 }
334
335 void srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end);
336
337 extern unsigned long probe_memory(void);        /* in fault.c */
338
339 /* Reserve nocache dynamically proportionally to the amount of
340  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
341  */
342 void srmmu_nocache_calcsize(void)
343 {
344         unsigned long sysmemavail = probe_memory() / 1024;
345
346         srmmu_nocache_npages =
347                 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
348         if (sysmemavail % (SRMMU_NOCACHE_ALCRATIO * 1024))
349                 srmmu_nocache_npages += 256;
350
351         /* anything above 1280 blows up */
352         if (srmmu_nocache_npages > 1280) srmmu_nocache_npages = 1280;
353
354         srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
355         srmmu_nocache_bitmap_size = srmmu_nocache_npages * 16;
356         srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
357         fix_kmap_begin = srmmu_nocache_end;
358         fix_kmap_end = fix_kmap_begin + (KM_TYPE_NR * NR_CPUS - 1) * PAGE_SIZE;
359         pkmap_base = SRMMU_NOCACHE_VADDR + srmmu_nocache_size + 0x40000;
360         pkmap_base_end = pkmap_base + LAST_PKMAP * PAGE_SIZE;
361
362         /* printk("system memory available = %luk\nnocache ram size = %luk\n",
363                 sysmemavail, srmmu_nocache_size / 1024); */
364 }
365
366 void srmmu_nocache_init(void)
367 {
368         pgd_t *pgd;
369         pmd_t *pmd;
370         pte_t *pte;
371         unsigned long paddr, vaddr;
372         unsigned long pteval;
373
374         srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
375                 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
376         memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
377
378         srmmu_nocache_bitmap = __alloc_bootmem(srmmu_nocache_bitmap_size, SMP_CACHE_BYTES, 0UL);
379         memset(srmmu_nocache_bitmap, 0, srmmu_nocache_bitmap_size);
380
381         srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
382         memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
383         init_mm.pgd = srmmu_swapper_pg_dir;
384
385         srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
386
387         spin_lock_init(&srmmu_nocache_spinlock);
388
389         paddr = __pa((unsigned long)srmmu_nocache_pool);
390         vaddr = SRMMU_NOCACHE_VADDR;
391
392         while (vaddr < srmmu_nocache_end) {
393                 pgd = pgd_offset_k(vaddr);
394                 pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
395                 pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
396
397                 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
398
399                 if (srmmu_cache_pagetables)
400                         pteval |= SRMMU_CACHE;
401
402                 srmmu_set_pte(__nocache_fix(pte), pteval);
403
404                 vaddr += PAGE_SIZE;
405                 paddr += PAGE_SIZE;
406         }
407
408         flush_cache_all();
409         flush_tlb_all();
410 }
411
412 static inline pgd_t *srmmu_get_pgd_fast(void)
413 {
414         pgd_t *pgd = NULL;
415
416         pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
417         if (pgd) {
418                 pgd_t *init = pgd_offset_k(0);
419                 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
420                 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
421                                                 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
422         }
423
424         return pgd;
425 }
426
427 static void srmmu_free_pgd_fast(pgd_t *pgd)
428 {
429         srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
430 }
431
432 static pte_t *srmmu_pte_alloc_one_fast(struct mm_struct *mm, unsigned long address)
433 {
434         return (pte_t *)srmmu_get_nocache(SRMMU_PTE_TABLE_SIZE, SRMMU_PTE_TABLE_SIZE);
435 }
436
437 static pte_t *srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
438 {
439         return NULL;
440 }
441
442 static void srmmu_free_pte_fast(pte_t *pte)
443 {
444         srmmu_free_nocache((unsigned long)pte, SRMMU_PTE_TABLE_SIZE);
445 }
446
447 static pmd_t *srmmu_pmd_alloc_one_fast(struct mm_struct *mm, unsigned long address)
448 {
449         return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
450 }
451
452 static void srmmu_free_pmd_fast(pmd_t * pmd)
453 {
454         srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
455 }
456
457 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
458 {
459         struct ctx_list *ctxp;
460
461         ctxp = ctx_free.next;
462         if(ctxp != &ctx_free) {
463                 remove_from_ctx_list(ctxp);
464                 add_to_used_ctxlist(ctxp);
465                 mm->context = ctxp->ctx_number;
466                 ctxp->ctx_mm = mm;
467                 return;
468         }
469         ctxp = ctx_used.next;
470         if(ctxp->ctx_mm == old_mm)
471                 ctxp = ctxp->next;
472         if(ctxp == &ctx_used)
473                 panic("out of mmu contexts");
474         flush_cache_mm(ctxp->ctx_mm);
475         flush_tlb_mm(ctxp->ctx_mm);
476         remove_from_ctx_list(ctxp);
477         add_to_used_ctxlist(ctxp);
478         ctxp->ctx_mm->context = NO_CONTEXT;
479         ctxp->ctx_mm = mm;
480         mm->context = ctxp->ctx_number;
481 }
482
483 static inline void free_context(int context)
484 {
485         struct ctx_list *ctx_old;
486
487         ctx_old = ctx_list_pool + context;
488         remove_from_ctx_list(ctx_old);
489         add_to_free_ctxlist(ctx_old);
490 }
491
492
493 static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
494     struct task_struct *tsk, int cpu)
495 {
496         if(mm->context == NO_CONTEXT) {
497                 spin_lock(&srmmu_context_spinlock);
498                 alloc_context(old_mm, mm);
499                 spin_unlock(&srmmu_context_spinlock);
500                 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
501         }
502
503         if (is_hypersparc)
504                 hyper_flush_whole_icache();
505
506         srmmu_set_context(mm->context);
507 }
508
509 /* Low level IO area allocation on the SRMMU. */
510 void srmmu_mapioaddr(unsigned long physaddr, unsigned long virt_addr, int bus_type, int rdonly)
511 {
512         pgd_t *pgdp;
513         pmd_t *pmdp;
514         pte_t *ptep;
515         unsigned long tmp;
516
517         physaddr &= PAGE_MASK;
518         pgdp = pgd_offset_k(virt_addr);
519         pmdp = srmmu_pmd_offset(pgdp, virt_addr);
520         ptep = srmmu_pte_offset(pmdp, virt_addr);
521         tmp = (physaddr >> 4) | SRMMU_ET_PTE;
522
523         /*
524          * I need to test whether this is consistent over all
525          * sun4m's.  The bus_type represents the upper 4 bits of
526          * 36-bit physical address on the I/O space lines...
527          */
528         tmp |= (bus_type << 28);
529         if(rdonly)
530                 tmp |= SRMMU_PRIV_RDONLY;
531         else
532                 tmp |= SRMMU_PRIV;
533         __flush_page_to_ram(virt_addr);
534         srmmu_set_pte(ptep, __pte(tmp));
535         flush_tlb_all();
536 }
537
538 void srmmu_unmapioaddr(unsigned long virt_addr)
539 {
540         pgd_t *pgdp;
541         pmd_t *pmdp;
542         pte_t *ptep;
543
544         pgdp = pgd_offset_k(virt_addr);
545         pmdp = srmmu_pmd_offset(pgdp, virt_addr);
546         ptep = srmmu_pte_offset(pmdp, virt_addr);
547
548         /* No need to flush uncacheable page. */
549         srmmu_pte_clear(ptep);
550         flush_tlb_all();
551 }
552
553 /*
554  * On the SRMMU we do not have the problems with limited tlb entries
555  * for mapping kernel pages, so we just take things from the free page
556  * pool.  As a side effect we are putting a little too much pressure
557  * on the gfp() subsystem.  This setup also makes the logic of the
558  * iommu mapping code a lot easier as we can transparently handle
559  * mappings on the kernel stack without any special code as we did
560  * need on the sun4c.
561  */
562 struct task_struct *srmmu_alloc_task_struct(void)
563 {
564         return (struct task_struct *) __get_free_pages(GFP_KERNEL, 1);
565 }
566
567 static void srmmu_free_task_struct(struct task_struct *tsk)
568 {
569         free_pages((unsigned long)tsk, 1);
570 }
571
572 static void srmmu_get_task_struct(struct task_struct *tsk)
573 {
574         atomic_inc(&virt_to_page(tsk)->count);
575 }
576
577 /* tsunami.S */
578 extern void tsunami_flush_cache_all(void);
579 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
580 extern void tsunami_flush_cache_range(struct mm_struct *mm, unsigned long start, unsigned long end);
581 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
582 extern void tsunami_flush_page_to_ram(unsigned long page);
583 extern void tsunami_flush_page_for_dma(unsigned long page);
584 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
585 extern void tsunami_flush_tlb_all(void);
586 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
587 extern void tsunami_flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end);
588 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
589 extern void tsunami_setup_blockops(void);
590
591 /*
592  * Workaround, until we find what's going on with Swift. When low on memory,
593  * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
594  * out it is already in page tables/ fault again on the same instruction.
595  * I really don't understand it, have checked it and contexts
596  * are right, flush_tlb_all is done as well, and it faults again...
597  * Strange. -jj
598  *
599  * The following code is a deadwood that may be necessary when
600  * we start to make precise page flushes again. --zaitcev
601  */
602 static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
603 {
604 #if 0
605         static unsigned long last;
606         unsigned int val;
607         /* unsigned int n; */
608
609         if (address == last) {
610                 val = srmmu_hwprobe(address);
611                 if (val != 0 && pte_val(pte) != val) {
612                         printk("swift_update_mmu_cache: "
613                             "addr %lx put %08x probed %08x from %p\n",
614                             address, pte_val(pte), val,
615                             __builtin_return_address(0));
616                         srmmu_flush_whole_tlb();
617                 }
618         }
619         last = address;
620 #endif
621 }
622
623 /* swift.S */
624 extern void swift_flush_cache_all(void);
625 extern void swift_flush_cache_mm(struct mm_struct *mm);
626 extern void swift_flush_cache_range(struct mm_struct *mm,
627                                     unsigned long start, unsigned long end);
628 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
629 extern void swift_flush_page_to_ram(unsigned long page);
630 extern void swift_flush_page_for_dma(unsigned long page);
631 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
632 extern void swift_flush_tlb_all(void);
633 extern void swift_flush_tlb_mm(struct mm_struct *mm);
634 extern void swift_flush_tlb_range(struct mm_struct *mm,
635                                   unsigned long start, unsigned long end);
636 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
637
638 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
639 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
640 {
641         int cctx, ctx1;
642
643         page &= PAGE_MASK;
644         if ((ctx1 = vma->vm_mm->context) != -1) {
645                 cctx = srmmu_get_context();
646 /* Is context # ever different from current context? P3 */
647                 if (cctx != ctx1) {
648                         printk("flush ctx %02x curr %02x\n", ctx1, cctx);
649                         srmmu_set_context(ctx1);
650                         swift_flush_page(page);
651                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
652                                         "r" (page), "i" (ASI_M_FLUSH_PROBE));
653                         srmmu_set_context(cctx);
654                 } else {
655                          /* Rm. prot. bits from virt. c. */
656                         /* swift_flush_cache_all(); */
657                         /* swift_flush_cache_page(vma, page); */
658                         swift_flush_page(page);
659
660                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
661                                 "r" (page), "i" (ASI_M_FLUSH_PROBE));
662                         /* same as above: srmmu_flush_tlb_page() */
663                 }
664         }
665 }
666 #endif
667
668 /*
669  * The following are all MBUS based SRMMU modules, and therefore could
670  * be found in a multiprocessor configuration.  On the whole, these
671  * chips seems to be much more touchy about DVMA and page tables
672  * with respect to cache coherency.
673  */
674
675 /* Cypress flushes. */
676 static void cypress_flush_cache_all(void)
677 {
678         volatile unsigned long cypress_sucks;
679         unsigned long faddr, tagval;
680
681         flush_user_windows();
682         for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
683                 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
684                                      "=r" (tagval) :
685                                      "r" (faddr), "r" (0x40000),
686                                      "i" (ASI_M_DATAC_TAG));
687
688                 /* If modified and valid, kick it. */
689                 if((tagval & 0x60) == 0x60)
690                         cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
691         }
692 }
693
694 static void cypress_flush_cache_mm(struct mm_struct *mm)
695 {
696         register unsigned long a, b, c, d, e, f, g;
697         unsigned long flags, faddr;
698         int octx;
699
700         FLUSH_BEGIN(mm)
701         flush_user_windows();
702         __save_and_cli(flags);
703         octx = srmmu_get_context();
704         srmmu_set_context(mm->context);
705         a = 0x20; b = 0x40; c = 0x60;
706         d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
707
708         faddr = (0x10000 - 0x100);
709         goto inside;
710         do {
711                 faddr -= 0x100;
712         inside:
713                 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
714                                      "sta %%g0, [%0 + %2] %1\n\t"
715                                      "sta %%g0, [%0 + %3] %1\n\t"
716                                      "sta %%g0, [%0 + %4] %1\n\t"
717                                      "sta %%g0, [%0 + %5] %1\n\t"
718                                      "sta %%g0, [%0 + %6] %1\n\t"
719                                      "sta %%g0, [%0 + %7] %1\n\t"
720                                      "sta %%g0, [%0 + %8] %1\n\t" : :
721                                      "r" (faddr), "i" (ASI_M_FLUSH_CTX),
722                                      "r" (a), "r" (b), "r" (c), "r" (d),
723                                      "r" (e), "r" (f), "r" (g));
724         } while(faddr);
725         srmmu_set_context(octx);
726         __restore_flags(flags);
727         FLUSH_END
728 }
729
730 static void cypress_flush_cache_range(struct mm_struct *mm, unsigned long start, unsigned long end)
731 {
732         register unsigned long a, b, c, d, e, f, g;
733         unsigned long flags, faddr;
734         int octx;
735
736         FLUSH_BEGIN(mm)
737         flush_user_windows();
738         __save_and_cli(flags);
739         octx = srmmu_get_context();
740         srmmu_set_context(mm->context);
741         a = 0x20; b = 0x40; c = 0x60;
742         d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
743
744         start &= SRMMU_PMD_MASK;
745         while(start < end) {
746                 faddr = (start + (0x10000 - 0x100));
747                 goto inside;
748                 do {
749                         faddr -= 0x100;
750                 inside:
751                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
752                                              "sta %%g0, [%0 + %2] %1\n\t"
753                                              "sta %%g0, [%0 + %3] %1\n\t"
754                                              "sta %%g0, [%0 + %4] %1\n\t"
755                                              "sta %%g0, [%0 + %5] %1\n\t"
756                                              "sta %%g0, [%0 + %6] %1\n\t"
757                                              "sta %%g0, [%0 + %7] %1\n\t"
758                                              "sta %%g0, [%0 + %8] %1\n\t" : :
759                                              "r" (faddr),
760                                              "i" (ASI_M_FLUSH_SEG),
761                                              "r" (a), "r" (b), "r" (c), "r" (d),
762                                              "r" (e), "r" (f), "r" (g));
763                 } while (faddr != start);
764                 start += SRMMU_PMD_SIZE;
765         }
766         srmmu_set_context(octx);
767         __restore_flags(flags);
768         FLUSH_END
769 }
770
771 static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
772 {
773         register unsigned long a, b, c, d, e, f, g;
774         struct mm_struct *mm = vma->vm_mm;
775         unsigned long flags, line;
776         int octx;
777
778         FLUSH_BEGIN(mm)
779         flush_user_windows();
780         __save_and_cli(flags);
781         octx = srmmu_get_context();
782         srmmu_set_context(mm->context);
783         a = 0x20; b = 0x40; c = 0x60;
784         d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
785
786         page &= PAGE_MASK;
787         line = (page + PAGE_SIZE) - 0x100;
788         goto inside;
789         do {
790                 line -= 0x100;
791         inside:
792                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
793                                              "sta %%g0, [%0 + %2] %1\n\t"
794                                              "sta %%g0, [%0 + %3] %1\n\t"
795                                              "sta %%g0, [%0 + %4] %1\n\t"
796                                              "sta %%g0, [%0 + %5] %1\n\t"
797                                              "sta %%g0, [%0 + %6] %1\n\t"
798                                              "sta %%g0, [%0 + %7] %1\n\t"
799                                              "sta %%g0, [%0 + %8] %1\n\t" : :
800                                              "r" (line),
801                                              "i" (ASI_M_FLUSH_PAGE),
802                                              "r" (a), "r" (b), "r" (c), "r" (d),
803                                              "r" (e), "r" (f), "r" (g));
804         } while(line != page);
805         srmmu_set_context(octx);
806         __restore_flags(flags);
807         FLUSH_END
808 }
809
810 /* Cypress is copy-back, at least that is how we configure it. */
811 static void cypress_flush_page_to_ram(unsigned long page)
812 {
813         register unsigned long a, b, c, d, e, f, g;
814         unsigned long line;
815
816         a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
817         page &= PAGE_MASK;
818         line = (page + PAGE_SIZE) - 0x100;
819         goto inside;
820         do {
821                 line -= 0x100;
822         inside:
823                 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
824                                      "sta %%g0, [%0 + %2] %1\n\t"
825                                      "sta %%g0, [%0 + %3] %1\n\t"
826                                      "sta %%g0, [%0 + %4] %1\n\t"
827                                      "sta %%g0, [%0 + %5] %1\n\t"
828                                      "sta %%g0, [%0 + %6] %1\n\t"
829                                      "sta %%g0, [%0 + %7] %1\n\t"
830                                      "sta %%g0, [%0 + %8] %1\n\t" : :
831                                      "r" (line),
832                                      "i" (ASI_M_FLUSH_PAGE),
833                                      "r" (a), "r" (b), "r" (c), "r" (d),
834                                      "r" (e), "r" (f), "r" (g));
835         } while(line != page);
836 }
837
838 /* Cypress is also IO cache coherent. */
839 static void cypress_flush_page_for_dma(unsigned long page)
840 {
841 }
842
843 /* Cypress has unified L2 VIPT, from which both instructions and data
844  * are stored.  It does not have an onboard icache of any sort, therefore
845  * no flush is necessary.
846  */
847 static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
848 {
849 }
850
851 static void cypress_flush_tlb_all(void)
852 {
853         srmmu_flush_whole_tlb();
854 }
855
856 static void cypress_flush_tlb_mm(struct mm_struct *mm)
857 {
858         FLUSH_BEGIN(mm)
859         __asm__ __volatile__(
860         "lda    [%0] %3, %%g5\n\t"
861         "sta    %2, [%0] %3\n\t"
862         "sta    %%g0, [%1] %4\n\t"
863         "sta    %%g5, [%0] %3\n"
864         : /* no outputs */
865         : "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
866           "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
867         : "g5");
868         FLUSH_END
869 }
870
871 static void cypress_flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end)
872 {
873         unsigned long size;
874
875         FLUSH_BEGIN(mm)
876         start &= SRMMU_PGDIR_MASK;
877         size = SRMMU_PGDIR_ALIGN(end) - start;
878         __asm__ __volatile__(
879                 "lda    [%0] %5, %%g5\n\t"
880                 "sta    %1, [%0] %5\n"
881                 "1:\n\t"
882                 "subcc  %3, %4, %3\n\t"
883                 "bne    1b\n\t"
884                 " sta   %%g0, [%2 + %3] %6\n\t"
885                 "sta    %%g5, [%0] %5\n"
886         : /* no outputs */
887         : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
888           "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
889           "i" (ASI_M_FLUSH_PROBE)
890         : "g5", "cc");
891         FLUSH_END
892 }
893
894 static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
895 {
896         struct mm_struct *mm = vma->vm_mm;
897
898         FLUSH_BEGIN(mm)
899         __asm__ __volatile__(
900         "lda    [%0] %3, %%g5\n\t"
901         "sta    %1, [%0] %3\n\t"
902         "sta    %%g0, [%2] %4\n\t"
903         "sta    %%g5, [%0] %3\n"
904         : /* no outputs */
905         : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
906           "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
907         : "g5");
908         FLUSH_END
909 }
910
911 /* viking.S */
912 extern void viking_flush_cache_all(void);
913 extern void viking_flush_cache_mm(struct mm_struct *mm);
914 extern void viking_flush_cache_range(struct mm_struct *mm, unsigned long start,
915                                      unsigned long end);
916 extern void viking_flush_cache_page(struct vm_area_struct *vma,
917                                     unsigned long page);
918 extern void viking_flush_page_to_ram(unsigned long page);
919 extern void viking_flush_page_for_dma(unsigned long page);
920 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
921 extern void viking_flush_page(unsigned long page);
922 extern void viking_mxcc_flush_page(unsigned long page);
923 extern void viking_flush_tlb_all(void);
924 extern void viking_flush_tlb_mm(struct mm_struct *mm);
925 extern void viking_flush_tlb_range(struct mm_struct *mm, unsigned long start,
926                                    unsigned long end);
927 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
928                                   unsigned long page);
929 extern void sun4dsmp_flush_tlb_all(void);
930 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
931 extern void sun4dsmp_flush_tlb_range(struct mm_struct *mm, unsigned long start,
932                                    unsigned long end);
933 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
934                                   unsigned long page);
935
936 /* hypersparc.S */
937 extern void hypersparc_flush_cache_all(void);
938 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
939 extern void hypersparc_flush_cache_range(struct mm_struct *mm, unsigned long start, unsigned long end);
940 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
941 extern void hypersparc_flush_page_to_ram(unsigned long page);
942 extern void hypersparc_flush_page_for_dma(unsigned long page);
943 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
944 extern void hypersparc_flush_tlb_all(void);
945 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
946 extern void hypersparc_flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end);
947 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
948 extern void hypersparc_setup_blockops(void);
949
950 /*
951  * NOTE: All of this startup code assumes the low 16mb (approx.) of
952  *       kernel mappings are done with one single contiguous chunk of
953  *       ram.  On small ram machines (classics mainly) we only get
954  *       around 8mb mapped for us.
955  */
956
957 void __init early_pgtable_allocfail(char *type)
958 {
959         prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
960         prom_halt();
961 }
962
963 void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end)
964 {
965         pgd_t *pgdp;
966         pmd_t *pmdp;
967         pte_t *ptep;
968
969         while(start < end) {
970                 pgdp = pgd_offset_k(start);
971                 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
972                         pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
973                         if (pmdp == NULL)
974                                 early_pgtable_allocfail("pmd");
975                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
976                         srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
977                 }
978                 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
979                 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
980                         ptep = (pte_t *)__srmmu_get_nocache(SRMMU_PTE_TABLE_SIZE, SRMMU_PTE_TABLE_SIZE);
981                         if (ptep == NULL)
982                                 early_pgtable_allocfail("pte");
983                         memset(__nocache_fix(ptep), 0, SRMMU_PTE_TABLE_SIZE);
984                         srmmu_pmd_set(__nocache_fix(pmdp), ptep);
985                 }
986                 start = (start + SRMMU_PMD_SIZE) & SRMMU_PMD_MASK;
987         }
988 }
989
990 void __init srmmu_allocate_ptable_skeleton(unsigned long start, unsigned long end)
991 {
992         pgd_t *pgdp;
993         pmd_t *pmdp;
994         pte_t *ptep;
995
996         while(start < end) {
997                 pgdp = pgd_offset_k(start);
998                 if(srmmu_pgd_none(*pgdp)) {
999                         pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1000                         if (pmdp == NULL)
1001                                 early_pgtable_allocfail("pmd");
1002                         memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1003                         srmmu_pgd_set(pgdp, pmdp);
1004                 }
1005                 pmdp = srmmu_pmd_offset(pgdp, start);
1006                 if(srmmu_pmd_none(*pmdp)) {
1007                         ptep = (pte_t *)__srmmu_get_nocache(SRMMU_PTE_TABLE_SIZE, SRMMU_PTE_TABLE_SIZE);
1008                         if (ptep == NULL)
1009                                 early_pgtable_allocfail("pte");
1010                         memset(ptep, 0, SRMMU_PTE_TABLE_SIZE);
1011                         srmmu_pmd_set(pmdp, ptep);
1012                 }
1013                 start = (start + SRMMU_PMD_SIZE) & SRMMU_PMD_MASK;
1014         }
1015 }
1016
1017 /*
1018  * This is much cleaner than poking around physical address space
1019  * looking at the prom's page table directly which is what most
1020  * other OS's do.  Yuck... this is much better.
1021  */
1022 void __init srmmu_inherit_prom_mappings(unsigned long start,unsigned long end)
1023 {
1024         pgd_t *pgdp;
1025         pmd_t *pmdp;
1026         pte_t *ptep;
1027         int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1028         unsigned long prompte;
1029
1030         while(start <= end) {
1031                 if (start == 0)
1032                         break; /* probably wrap around */
1033                 if(start == 0xfef00000)
1034                         start = KADB_DEBUGGER_BEGVM;
1035                 if(!(prompte = srmmu_hwprobe(start))) {
1036                         start += PAGE_SIZE;
1037                         continue;
1038                 }
1039     
1040                 /* A red snapper, see what it really is. */
1041                 what = 0;
1042     
1043                 if(!(start & ~(SRMMU_PMD_MASK))) {
1044                         if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PMD_SIZE) == prompte)
1045                                 what = 1;
1046                 }
1047     
1048                 if(!(start & ~(SRMMU_PGDIR_MASK))) {
1049                         if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1050                            prompte)
1051                                 what = 2;
1052                 }
1053     
1054                 pgdp = pgd_offset_k(start);
1055                 if(what == 2) {
1056                         *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1057                         start += SRMMU_PGDIR_SIZE;
1058                         continue;
1059                 }
1060                 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1061                         pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1062                         if (pmdp == NULL)
1063                                 early_pgtable_allocfail("pmd");
1064                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1065                         srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1066                 }
1067                 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1068                 if(what == 1) {
1069                         *(pmd_t *)__nocache_fix(pmdp) = __pmd(prompte);
1070                         start += SRMMU_PMD_SIZE;
1071                         continue;
1072                 }
1073                 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1074                         ptep = (pte_t *)__srmmu_get_nocache(SRMMU_PTE_TABLE_SIZE, SRMMU_PTE_TABLE_SIZE);
1075                         if (ptep == NULL)
1076                                 early_pgtable_allocfail("pte");
1077                         memset(__nocache_fix(ptep), 0, SRMMU_PTE_TABLE_SIZE);
1078                         srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1079                 }
1080                 ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1081                 *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1082                 start += PAGE_SIZE;
1083         }
1084 }
1085
1086 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1087
1088 /* Create a third-level SRMMU 16MB page mapping. */
1089 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1090 {
1091         pgd_t *pgdp = pgd_offset_k(vaddr);
1092         unsigned long big_pte;
1093
1094         big_pte = KERNEL_PTE(phys_base >> 4);
1095         *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1096 }
1097
1098 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1099 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1100 {
1101         unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1102         unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1103         unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1104         /* Map "low" memory only */
1105         const unsigned long min_vaddr = PAGE_OFFSET;
1106         const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1107
1108         if (vstart < min_vaddr || vstart >= max_vaddr)
1109                 return vstart;
1110         
1111         if (vend > max_vaddr || vend < min_vaddr)
1112                 vend = max_vaddr;
1113
1114         while(vstart < vend) {
1115                 do_large_mapping(vstart, pstart);
1116                 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1117         }
1118         return vstart;
1119 }
1120
1121 static inline void memprobe_error(char *msg)
1122 {
1123         prom_printf(msg);
1124         prom_printf("Halting now...\n");
1125         prom_halt();
1126 }
1127
1128 static inline void map_kernel(void)
1129 {
1130         int i;
1131
1132         if (phys_base > 0) {
1133                 do_large_mapping(PAGE_OFFSET, phys_base);
1134         }
1135
1136         for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1137                 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1138         }
1139
1140         BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
1141 }
1142
1143 /* Paging initialization on the Sparc Reference MMU. */
1144 extern void sparc_context_init(int);
1145
1146 extern int linux_num_cpus;
1147 extern unsigned long totalhigh_pages;
1148
1149 void (*poke_srmmu)(void) __initdata = NULL;
1150
1151 extern unsigned long bootmem_init(unsigned long *pages_avail);
1152 extern void sun_serial_setup(void);
1153
1154 void __init srmmu_paging_init(void)
1155 {
1156         int i, cpunode;
1157         char node_str[128];
1158         pgd_t *pgd;
1159         pmd_t *pmd;
1160         pte_t *pte;
1161         unsigned long pages_avail;
1162
1163         sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
1164
1165         if (sparc_cpu_model == sun4d)
1166                 num_contexts = 65536; /* We know it is Viking */
1167         else {
1168                 /* Find the number of contexts on the srmmu. */
1169                 cpunode = prom_getchild(prom_root_node);
1170                 num_contexts = 0;
1171                 while(cpunode != 0) {
1172                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1173                         if(!strcmp(node_str, "cpu")) {
1174                                 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1175                                 break;
1176                         }
1177                         cpunode = prom_getsibling(cpunode);
1178                 }
1179         }
1180
1181         if(!num_contexts) {
1182                 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1183                 prom_halt();
1184         }
1185
1186         pages_avail = 0;
1187         last_valid_pfn = bootmem_init(&pages_avail);
1188
1189         srmmu_nocache_calcsize();
1190         srmmu_nocache_init();
1191         srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1192         map_kernel();
1193
1194         /* ctx table has to be physically aligned to its size */
1195         srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1196         srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1197
1198         for(i = 0; i < num_contexts; i++)
1199                 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1200
1201         flush_cache_all();
1202         srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
1203         flush_tlb_all();
1204         poke_srmmu();
1205
1206 #if CONFIG_SUN_IO
1207         srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1208         srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1209 #endif
1210
1211         srmmu_allocate_ptable_skeleton(fix_kmap_begin, fix_kmap_end);
1212         srmmu_allocate_ptable_skeleton(pkmap_base, pkmap_base_end);
1213
1214         pgd = pgd_offset_k(pkmap_base);
1215         pmd = pmd_offset(pgd, pkmap_base);
1216         pte = pte_offset(pmd, pkmap_base);
1217         pkmap_page_table = pte;
1218
1219         flush_cache_all();
1220         flush_tlb_all();
1221
1222         /*
1223          * This does not logically belong here, but we need to
1224          * call it at the moment we are able to use the bootmem
1225          * allocator.
1226          */
1227         sun_serial_setup();
1228
1229         sparc_context_init(num_contexts);
1230
1231         kmap_init();
1232
1233         {
1234                 unsigned long zones_size[MAX_NR_ZONES];
1235                 unsigned long zholes_size[MAX_NR_ZONES];
1236                 unsigned long npages;
1237                 int znum;
1238
1239                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1240                         zones_size[znum] = zholes_size[znum] = 0;
1241
1242                 npages = max_low_pfn - (phys_base >> PAGE_SHIFT);
1243
1244                 zones_size[ZONE_DMA] = npages;
1245                 zholes_size[ZONE_DMA] = npages - pages_avail;
1246
1247                 npages = highend_pfn - max_low_pfn;
1248                 zones_size[ZONE_HIGHMEM] = npages;
1249                 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1250
1251                 free_area_init_node(0, NULL, NULL, zones_size,
1252                                     phys_base, zholes_size);
1253         }
1254 }
1255
1256 static void srmmu_mmu_info(struct seq_file *m)
1257 {
1258         seq_printf(m, 
1259                    "MMU type\t: %s\n"
1260                    "contexts\t: %d\n"
1261                    "nocache total\t: %ld\n"
1262                    "nocache used\t: %d\n",
1263                    srmmu_name,
1264                    num_contexts,
1265                    srmmu_nocache_size,
1266                    (srmmu_nocache_used << SRMMU_NOCACHE_BITMAP_SHIFT));
1267 }
1268
1269 static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1270 {
1271 }
1272
1273 static void srmmu_destroy_context(struct mm_struct *mm)
1274 {
1275
1276         if(mm->context != NO_CONTEXT) {
1277                 flush_cache_mm(mm);
1278                 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1279                 flush_tlb_mm(mm);
1280                 spin_lock(&srmmu_context_spinlock);
1281                 free_context(mm->context);
1282                 spin_unlock(&srmmu_context_spinlock);
1283                 mm->context = NO_CONTEXT;
1284         }
1285 }
1286
1287 /* Init various srmmu chip types. */
1288 static void __init srmmu_is_bad(void)
1289 {
1290         prom_printf("Could not determine SRMMU chip type.\n");
1291         prom_halt();
1292 }
1293
1294 static void __init init_vac_layout(void)
1295 {
1296         int nd, cache_lines;
1297         char node_str[128];
1298 #ifdef CONFIG_SMP
1299         int cpu = 0;
1300         unsigned long max_size = 0;
1301         unsigned long min_line_size = 0x10000000;
1302 #endif
1303
1304         nd = prom_getchild(prom_root_node);
1305         while((nd = prom_getsibling(nd)) != 0) {
1306                 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1307                 if(!strcmp(node_str, "cpu")) {
1308                         vac_line_size = prom_getint(nd, "cache-line-size");
1309                         if (vac_line_size == -1) {
1310                                 prom_printf("can't determine cache-line-size, "
1311                                             "halting.\n");
1312                                 prom_halt();
1313                         }
1314                         cache_lines = prom_getint(nd, "cache-nlines");
1315                         if (cache_lines == -1) {
1316                                 prom_printf("can't determine cache-nlines, halting.\n");
1317                                 prom_halt();
1318                         }
1319
1320                         vac_cache_size = cache_lines * vac_line_size;
1321 #ifdef CONFIG_SMP
1322                         if(vac_cache_size > max_size)
1323                                 max_size = vac_cache_size;
1324                         if(vac_line_size < min_line_size)
1325                                 min_line_size = vac_line_size;
1326                         cpu++;
1327                         if(cpu == smp_num_cpus)
1328                                 break;
1329 #else
1330                         break;
1331 #endif
1332                 }
1333         }
1334         if(nd == 0) {
1335                 prom_printf("No CPU nodes found, halting.\n");
1336                 prom_halt();
1337         }
1338 #ifdef CONFIG_SMP
1339         vac_cache_size = max_size;
1340         vac_line_size = min_line_size;
1341 #endif
1342         printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1343                (int)vac_cache_size, (int)vac_line_size);
1344 }
1345
1346 static void __init poke_hypersparc(void)
1347 {
1348         volatile unsigned long clear;
1349         unsigned long mreg = srmmu_get_mmureg();
1350
1351         hyper_flush_unconditional_combined();
1352
1353         mreg &= ~(HYPERSPARC_CWENABLE);
1354         mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1355         mreg |= (HYPERSPARC_CMODE);
1356
1357         srmmu_set_mmureg(mreg);
1358
1359 #if 0 /* XXX I think this is bad news... -DaveM */
1360         hyper_clear_all_tags();
1361 #endif
1362
1363         put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1364         hyper_flush_whole_icache();
1365         clear = srmmu_get_faddr();
1366         clear = srmmu_get_fstatus();
1367 }
1368
1369 static void __init init_hypersparc(void)
1370 {
1371         srmmu_name = "ROSS HyperSparc";
1372
1373         init_vac_layout();
1374
1375         is_hypersparc = 1;
1376
1377         BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1378         BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1379         BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1380         BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1381         BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1382         BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1383         BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1384
1385         BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1386         BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1387         BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1388         BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1389
1390         BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1391         BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1392         BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1393
1394
1395         poke_srmmu = poke_hypersparc;
1396
1397         hypersparc_setup_blockops();
1398 }
1399
1400 static void __init poke_cypress(void)
1401 {
1402         unsigned long mreg = srmmu_get_mmureg();
1403         unsigned long faddr, tagval;
1404         volatile unsigned long cypress_sucks;
1405         volatile unsigned long clear;
1406
1407         clear = srmmu_get_faddr();
1408         clear = srmmu_get_fstatus();
1409
1410         if (!(mreg & CYPRESS_CENABLE)) {
1411                 for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1412                         __asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1413                                              "sta %%g0, [%0] %2\n\t" : :
1414                                              "r" (faddr), "r" (0x40000),
1415                                              "i" (ASI_M_DATAC_TAG));
1416                 }
1417         } else {
1418                 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1419                         __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1420                                              "=r" (tagval) :
1421                                              "r" (faddr), "r" (0x40000),
1422                                              "i" (ASI_M_DATAC_TAG));
1423
1424                         /* If modified and valid, kick it. */
1425                         if((tagval & 0x60) == 0x60)
1426                                 cypress_sucks = *(unsigned long *)
1427                                                         (0xf0020000 + faddr);
1428                 }
1429         }
1430
1431         /* And one more, for our good neighbor, Mr. Broken Cypress. */
1432         clear = srmmu_get_faddr();
1433         clear = srmmu_get_fstatus();
1434
1435         mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1436         srmmu_set_mmureg(mreg);
1437 }
1438
1439 static void __init init_cypress_common(void)
1440 {
1441         init_vac_layout();
1442
1443         BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1444         BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1445         BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1446         BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1447         BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1448         BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1449         BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1450
1451         BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1452         BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1453         BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1454         BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1455
1456
1457         BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1458         BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1459         BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1460
1461         poke_srmmu = poke_cypress;
1462 }
1463
1464 static void __init init_cypress_604(void)
1465 {
1466         srmmu_name = "ROSS Cypress-604(UP)";
1467         srmmu_modtype = Cypress;
1468         init_cypress_common();
1469 }
1470
1471 static void __init init_cypress_605(unsigned long mrev)
1472 {
1473         srmmu_name = "ROSS Cypress-605(MP)";
1474         if(mrev == 0xe) {
1475                 srmmu_modtype = Cypress_vE;
1476                 hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1477         } else {
1478                 if(mrev == 0xd) {
1479                         srmmu_modtype = Cypress_vD;
1480                         hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1481                 } else {
1482                         srmmu_modtype = Cypress;
1483                 }
1484         }
1485         init_cypress_common();
1486 }
1487
1488 static void __init poke_swift(void)
1489 {
1490         unsigned long mreg;
1491
1492         /* Clear any crap from the cache or else... */
1493         swift_flush_cache_all();
1494
1495         /* Enable I & D caches */
1496         mreg = srmmu_get_mmureg();
1497         mreg |= (SWIFT_IE | SWIFT_DE);
1498         /*
1499          * The Swift branch folding logic is completely broken.  At
1500          * trap time, if things are just right, if can mistakenly
1501          * think that a trap is coming from kernel mode when in fact
1502          * it is coming from user mode (it mis-executes the branch in
1503          * the trap code).  So you see things like crashme completely
1504          * hosing your machine which is completely unacceptable.  Turn
1505          * this shit off... nice job Fujitsu.
1506          */
1507         mreg &= ~(SWIFT_BF);
1508         srmmu_set_mmureg(mreg);
1509 }
1510
1511 #define SWIFT_MASKID_ADDR  0x10003018
1512 static void __init init_swift(void)
1513 {
1514         unsigned long swift_rev;
1515
1516         __asm__ __volatile__("lda [%1] %2, %0\n\t"
1517                              "srl %0, 0x18, %0\n\t" :
1518                              "=r" (swift_rev) :
1519                              "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1520         srmmu_name = "Fujitsu Swift";
1521         switch(swift_rev) {
1522         case 0x11:
1523         case 0x20:
1524         case 0x23:
1525         case 0x30:
1526                 srmmu_modtype = Swift_lots_o_bugs;
1527                 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1528                 /*
1529                  * Gee george, I wonder why Sun is so hush hush about
1530                  * this hardware bug... really braindamage stuff going
1531                  * on here.  However I think we can find a way to avoid
1532                  * all of the workaround overhead under Linux.  Basically,
1533                  * any page fault can cause kernel pages to become user
1534                  * accessible (the mmu gets confused and clears some of
1535                  * the ACC bits in kernel ptes).  Aha, sounds pretty
1536                  * horrible eh?  But wait, after extensive testing it appears
1537                  * that if you use pgd_t level large kernel pte's (like the
1538                  * 4MB pages on the Pentium) the bug does not get tripped
1539                  * at all.  This avoids almost all of the major overhead.
1540                  * Welcome to a world where your vendor tells you to,
1541                  * "apply this kernel patch" instead of "sorry for the
1542                  * broken hardware, send it back and we'll give you
1543                  * properly functioning parts"
1544                  */
1545                 break;
1546         case 0x25:
1547         case 0x31:
1548                 srmmu_modtype = Swift_bad_c;
1549                 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1550                 /*
1551                  * You see Sun allude to this hardware bug but never
1552                  * admit things directly, they'll say things like,
1553                  * "the Swift chip cache problems" or similar.
1554                  */
1555                 break;
1556         default:
1557                 srmmu_modtype = Swift_ok;
1558                 break;
1559         };
1560
1561         BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1562         BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1563         BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1564         BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1565
1566
1567         BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1568         BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1569         BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1570         BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1571
1572         BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1573         BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1574         BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1575
1576         BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1577
1578         flush_page_for_dma_global = 0;
1579
1580         /*
1581          * Are you now convinced that the Swift is one of the
1582          * biggest VLSI abortions of all time?  Bravo Fujitsu!
1583          * Fujitsu, the !#?!%$'d up processor people.  I bet if
1584          * you examined the microcode of the Swift you'd find
1585          * XXX's all over the place.
1586          */
1587         poke_srmmu = poke_swift;
1588 }
1589
1590 static void turbosparc_flush_cache_all(void)
1591 {
1592         flush_user_windows();
1593         turbosparc_idflash_clear();
1594 }
1595
1596 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1597 {
1598         FLUSH_BEGIN(mm)
1599         flush_user_windows();
1600         turbosparc_idflash_clear();
1601         FLUSH_END
1602 }
1603
1604 static void turbosparc_flush_cache_range(struct mm_struct *mm, unsigned long start, unsigned long end)
1605 {
1606         FLUSH_BEGIN(mm)
1607         flush_user_windows();
1608         turbosparc_idflash_clear();
1609         FLUSH_END
1610 }
1611
1612 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1613 {
1614         FLUSH_BEGIN(vma->vm_mm)
1615         flush_user_windows();
1616         if (vma->vm_flags & VM_EXEC)
1617                 turbosparc_flush_icache();
1618         turbosparc_flush_dcache();
1619         FLUSH_END
1620 }
1621
1622 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1623 static void turbosparc_flush_page_to_ram(unsigned long page)
1624 {
1625 #ifdef TURBOSPARC_WRITEBACK
1626         volatile unsigned long clear;
1627
1628         if (srmmu_hwprobe(page))
1629                 turbosparc_flush_page_cache(page);
1630         clear = srmmu_get_fstatus();
1631 #endif
1632 }
1633
1634 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1635 {
1636 }
1637
1638 static void turbosparc_flush_page_for_dma(unsigned long page)
1639 {
1640         turbosparc_flush_dcache();
1641 }
1642
1643 static void turbosparc_flush_tlb_all(void)
1644 {
1645         srmmu_flush_whole_tlb();
1646 }
1647
1648 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1649 {
1650         FLUSH_BEGIN(mm)
1651         srmmu_flush_whole_tlb();
1652         FLUSH_END
1653 }
1654
1655 static void turbosparc_flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end)
1656 {
1657         FLUSH_BEGIN(mm)
1658         srmmu_flush_whole_tlb();
1659         FLUSH_END
1660 }
1661
1662 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1663 {
1664         FLUSH_BEGIN(vma->vm_mm)
1665         srmmu_flush_whole_tlb();
1666         FLUSH_END
1667 }
1668
1669
1670 static void __init poke_turbosparc(void)
1671 {
1672         unsigned long mreg = srmmu_get_mmureg();
1673         unsigned long ccreg;
1674
1675         /* Clear any crap from the cache or else... */
1676         turbosparc_flush_cache_all();
1677         mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1678         mreg &= ~(TURBOSPARC_PCENABLE);         /* Don't check parity */
1679         srmmu_set_mmureg(mreg);
1680         
1681         ccreg = turbosparc_get_ccreg();
1682
1683 #ifdef TURBOSPARC_WRITEBACK
1684         ccreg |= (TURBOSPARC_SNENABLE);         /* Do DVMA snooping in Dcache */
1685         ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1686                         /* Write-back D-cache, emulate VLSI
1687                          * abortion number three, not number one */
1688 #else
1689         /* For now let's play safe, optimize later */
1690         ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1691                         /* Do DVMA snooping in Dcache, Write-thru D-cache */
1692         ccreg &= ~(TURBOSPARC_uS2);
1693                         /* Emulate VLSI abortion number three, not number one */
1694 #endif
1695
1696         switch (ccreg & 7) {
1697         case 0: /* No SE cache */
1698         case 7: /* Test mode */
1699                 break;
1700         default:
1701                 ccreg |= (TURBOSPARC_SCENABLE);
1702         }
1703         turbosparc_set_ccreg (ccreg);
1704
1705         mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1706         mreg |= (TURBOSPARC_ICSNOOP);           /* Icache snooping on */
1707         srmmu_set_mmureg(mreg);
1708 }
1709
1710 static void __init init_turbosparc(void)
1711 {
1712         srmmu_name = "Fujitsu TurboSparc";
1713         srmmu_modtype = TurboSparc;
1714
1715         BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1716         BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1717         BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1718         BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1719
1720         BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1721         BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1722         BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1723         BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1724
1725         BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1726
1727         BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1728         BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1729
1730         poke_srmmu = poke_turbosparc;
1731 }
1732
1733 static void __init poke_tsunami(void)
1734 {
1735         unsigned long mreg = srmmu_get_mmureg();
1736
1737         tsunami_flush_icache();
1738         tsunami_flush_dcache();
1739         mreg &= ~TSUNAMI_ITD;
1740         mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1741         srmmu_set_mmureg(mreg);
1742 }
1743
1744 static void __init init_tsunami(void)
1745 {
1746         /*
1747          * Tsunami's pretty sane, Sun and TI actually got it
1748          * somewhat right this time.  Fujitsu should have
1749          * taken some lessons from them.
1750          */
1751
1752         srmmu_name = "TI Tsunami";
1753         srmmu_modtype = Tsunami;
1754
1755         BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1756         BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1757         BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1758         BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1759
1760
1761         BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1762         BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1763         BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1764         BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1765
1766         BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1767         BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1768         BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1769
1770         poke_srmmu = poke_tsunami;
1771
1772         tsunami_setup_blockops();
1773 }
1774
1775 static void __init poke_viking(void)
1776 {
1777         unsigned long mreg = srmmu_get_mmureg();
1778         static int smp_catch;
1779
1780         if(viking_mxcc_present) {
1781                 unsigned long mxcc_control = mxcc_get_creg();
1782
1783                 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1784                 mxcc_control &= ~(MXCC_CTL_RRC);
1785                 mxcc_set_creg(mxcc_control);
1786
1787                 /*
1788                  * We don't need memory parity checks.
1789                  * XXX This is a mess, have to dig out later. ecd.
1790                 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1791                  */
1792
1793                 /* We do cache ptables on MXCC. */
1794                 mreg |= VIKING_TCENABLE;
1795         } else {
1796                 unsigned long bpreg;
1797
1798                 mreg &= ~(VIKING_TCENABLE);
1799                 if(smp_catch++) {
1800                         /* Must disable mixed-cmd mode here for other cpu's. */
1801                         bpreg = viking_get_bpreg();
1802                         bpreg &= ~(VIKING_ACTION_MIX);
1803                         viking_set_bpreg(bpreg);
1804
1805                         /* Just in case PROM does something funny. */
1806                         msi_set_sync();
1807                 }
1808         }
1809
1810         mreg |= VIKING_SPENABLE;
1811         mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1812         mreg |= VIKING_SBENABLE;
1813         mreg &= ~(VIKING_ACENABLE);
1814         srmmu_set_mmureg(mreg);
1815
1816 #ifdef CONFIG_SMP
1817         /* Avoid unnecessary cross calls. */
1818         BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
1819         BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
1820         BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
1821         BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
1822         BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
1823         BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
1824         BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
1825         btfixup();
1826 #endif
1827 }
1828
1829 static void __init init_viking(void)
1830 {
1831         unsigned long mreg = srmmu_get_mmureg();
1832
1833         /* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1834         if(mreg & VIKING_MMODE) {
1835                 srmmu_name = "TI Viking";
1836                 viking_mxcc_present = 0;
1837                 msi_set_sync();
1838
1839                 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1840                 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1841                 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1842
1843                 /*
1844                  * We need this to make sure old viking takes no hits
1845                  * on it's cache for dma snoops to workaround the
1846                  * "load from non-cacheable memory" interrupt bug.
1847                  * This is only necessary because of the new way in
1848                  * which we use the IOMMU.
1849                  */
1850                 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1851
1852                 flush_page_for_dma_global = 0;
1853         } else {
1854                 srmmu_name = "TI Viking/MXCC";
1855                 viking_mxcc_present = 1;
1856
1857                 srmmu_cache_pagetables = 1;
1858
1859                 /* MXCC vikings lack the DMA snooping bug. */
1860                 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1861         }
1862
1863         BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1864         BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1865         BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1866         BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1867
1868 #ifdef CONFIG_SMP
1869         if (sparc_cpu_model == sun4d) {
1870                 BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1871                 BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1872                 BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1873                 BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1874         } else
1875 #endif
1876         {
1877                 BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1878                 BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1879                 BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1880                 BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1881         }
1882
1883         BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1884         BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1885
1886         poke_srmmu = poke_viking;
1887 }
1888
1889 /* Probe for the srmmu chip version. */
1890 static void __init get_srmmu_type(void)
1891 {
1892         unsigned long mreg, psr;
1893         unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1894
1895         srmmu_modtype = SRMMU_INVAL_MOD;
1896         hwbug_bitmask = 0;
1897
1898         mreg = srmmu_get_mmureg(); psr = get_psr();
1899         mod_typ = (mreg & 0xf0000000) >> 28;
1900         mod_rev = (mreg & 0x0f000000) >> 24;
1901         psr_typ = (psr >> 28) & 0xf;
1902         psr_vers = (psr >> 24) & 0xf;
1903
1904         /* First, check for HyperSparc or Cypress. */
1905         if(mod_typ == 1) {
1906                 switch(mod_rev) {
1907                 case 7:
1908                         /* UP or MP Hypersparc */
1909                         init_hypersparc();
1910                         break;
1911                 case 0:
1912                 case 2:
1913                         /* Uniprocessor Cypress */
1914                         init_cypress_604();
1915                         break;
1916                 case 10:
1917                 case 11:
1918                 case 12:
1919                         /* _REALLY OLD_ Cypress MP chips... */
1920                 case 13:
1921                 case 14:
1922                 case 15:
1923                         /* MP Cypress mmu/cache-controller */
1924                         init_cypress_605(mod_rev);
1925                         break;
1926                 default:
1927                         /* Some other Cypress revision, assume a 605. */
1928                         init_cypress_605(mod_rev);
1929                         break;
1930                 };
1931                 return;
1932         }
1933         
1934         /*
1935          * Now Fujitsu TurboSparc. It might happen that it is
1936          * in Swift emulation mode, so we will check later...
1937          */
1938         if (psr_typ == 0 && psr_vers == 5) {
1939                 init_turbosparc();
1940                 return;
1941         }
1942
1943         /* Next check for Fujitsu Swift. */
1944         if(psr_typ == 0 && psr_vers == 4) {
1945                 int cpunode;
1946                 char node_str[128];
1947
1948                 /* Look if it is not a TurboSparc emulating Swift... */
1949                 cpunode = prom_getchild(prom_root_node);
1950                 while((cpunode = prom_getsibling(cpunode)) != 0) {
1951                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1952                         if(!strcmp(node_str, "cpu")) {
1953                                 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1954                                     prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1955                                         init_turbosparc();
1956                                         return;
1957                                 }
1958                                 break;
1959                         }
1960                 }
1961                 
1962                 init_swift();
1963                 return;
1964         }
1965
1966         /* Now the Viking family of srmmu. */
1967         if(psr_typ == 4 &&
1968            ((psr_vers == 0) ||
1969             ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1970                 init_viking();
1971                 return;
1972         }
1973
1974         /* Finally the Tsunami. */
1975         if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1976                 init_tsunami();
1977                 return;
1978         }
1979
1980         /* Oh well */
1981         srmmu_is_bad();
1982 }
1983
1984 /* dont laugh, static pagetables */
1985 static int srmmu_check_pgt_cache(int low, int high)
1986 {
1987         return 0;
1988 }
1989
1990 extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
1991         tsetup_mmu_patchme, rtrap_mmu_patchme;
1992
1993 extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
1994         tsetup_srmmu_stackchk, srmmu_rett_stackchk;
1995
1996 extern unsigned long srmmu_fault;
1997
1998 #define PATCH_BRANCH(insn, dest) do { \
1999                 iaddr = &(insn); \
2000                 daddr = &(dest); \
2001                 *iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2002         } while(0);
2003
2004 static void __init patch_window_trap_handlers(void)
2005 {
2006         unsigned long *iaddr, *daddr;
2007         
2008         PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
2009         PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
2010         PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
2011         PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
2012         PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
2013         PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
2014         PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
2015 }
2016
2017 #ifdef CONFIG_SMP
2018 /* Local cross-calls. */
2019 static void smp_flush_page_for_dma(unsigned long page)
2020 {
2021         xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2022         local_flush_page_for_dma(page);
2023 }
2024
2025 #endif
2026
2027 /* Load up routines and constants for sun4m and sun4d mmu */
2028 void __init ld_mmu_srmmu(void)
2029 {
2030         extern void ld_mmu_iommu(void);
2031         extern void ld_mmu_iounit(void);
2032         extern void ___xchg32_sun4md(void);
2033         
2034         /* First the constants */
2035         BTFIXUPSET_SIMM13(pmd_shift, SRMMU_PMD_SHIFT);
2036         BTFIXUPSET_SETHI(pmd_size, SRMMU_PMD_SIZE);
2037         BTFIXUPSET_SETHI(pmd_mask, SRMMU_PMD_MASK);
2038         BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
2039         BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
2040         BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
2041
2042         BTFIXUPSET_SIMM13(ptrs_per_pte, SRMMU_PTRS_PER_PTE);
2043         BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD);
2044         BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
2045
2046         BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
2047         BTFIXUPSET_INT(page_shared, pgprot_val(SRMMU_PAGE_SHARED));
2048         BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
2049         BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
2050         BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
2051         page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
2052         pg_iobits = SRMMU_VALID | SRMMU_WRITE | SRMMU_REF;
2053         
2054         /* Functions */
2055 #ifndef CONFIG_SMP      
2056         BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2057 #endif
2058         BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NORM);
2059
2060         BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2061         BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
2062
2063         BTFIXUPSET_CALL(pte_page, srmmu_pte_page, BTFIXUPCALL_NORM);
2064         BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
2065         BTFIXUPSET_CALL(pgd_page, srmmu_pgd_page, BTFIXUPCALL_NORM);
2066
2067         BTFIXUPSET_SETHI(none_mask, 0xF0000000); /* XXX P3: is it used? */
2068
2069         BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2070         BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
2071
2072         BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
2073         BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
2074         BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
2075
2076         BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
2077         BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
2078         BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
2079         BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
2080
2081         BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2082         BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2083         BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2084         BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2085         BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2086         
2087         BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2088         BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2089         BTFIXUPSET_CALL(pte_offset, srmmu_pte_offset, BTFIXUPCALL_NORM);
2090         BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2091         BTFIXUPSET_CALL(pte_alloc_one_fast, srmmu_pte_alloc_one_fast, BTFIXUPCALL_NORM);
2092         BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2093         BTFIXUPSET_CALL(free_pmd_fast, srmmu_free_pmd_fast, BTFIXUPCALL_NORM);
2094         BTFIXUPSET_CALL(pmd_alloc_one_fast, srmmu_pmd_alloc_one_fast, BTFIXUPCALL_NORM);
2095         BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2096         BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2097
2098         BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2099         BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2100         BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2101         BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2102         BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2103         BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2104         BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2105         BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2106         BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2107         BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2108         BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2109         
2110         BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
2111
2112         /* Task struct and kernel stack allocating/freeing. */
2113         BTFIXUPSET_CALL(alloc_task_struct, srmmu_alloc_task_struct, BTFIXUPCALL_NORM);
2114         BTFIXUPSET_CALL(free_task_struct, srmmu_free_task_struct, BTFIXUPCALL_NORM);
2115         BTFIXUPSET_CALL(get_task_struct, srmmu_get_task_struct, BTFIXUPCALL_NORM);
2116
2117         get_srmmu_type();
2118         patch_window_trap_handlers();
2119
2120 #ifdef CONFIG_SMP
2121         /* El switcheroo... */
2122
2123         BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2124         BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2125         BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2126         BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2127         BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2128         BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2129         BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2130         BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2131         BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2132         BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2133         BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2134
2135         BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2136         BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2137         BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2138         BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2139         if (sparc_cpu_model != sun4d) {
2140                 BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2141                 BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2142                 BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2143                 BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2144         }
2145         BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2146         BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2147         BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2148 #endif
2149
2150         if (sparc_cpu_model == sun4d)
2151                 ld_mmu_iounit();
2152         else
2153                 ld_mmu_iommu();
2154 #ifdef CONFIG_SMP
2155         if (sparc_cpu_model == sun4d)
2156                 sun4d_init_smp();
2157         else
2158                 sun4m_init_smp();
2159 #endif
2160 }