added mtd driver
[linux-2.4.git] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/config.h>
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/string.h>
31 #include <linux/kernel.h>
32 #include <linux/timer.h>
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/major.h>
36 #include <linux/errno.h>
37 #include <linux/genhd.h>
38 #include <linux/blkpg.h>
39 #include <linux/slab.h>
40 #include <linux/init.h>
41 #include <linux/pci.h>
42 #include <linux/delay.h>
43 #include <linux/ide.h>
44 #include <linux/devfs_fs_kernel.h>
45 #include <linux/completion.h>
46 #include <linux/reboot.h>
47 #include <linux/cdrom.h>
48 #include <linux/seq_file.h>
49 #include <linux/kmod.h>
50
51 #include <asm/byteorder.h>
52 #include <asm/irq.h>
53 #include <asm/uaccess.h>
54 #include <asm/io.h>
55 #include <asm/bitops.h>
56
57 #include "ide_modes.h"
58
59 /*
60  *      ide_end_request         -       complete an IDE I/O
61  *      @drive: IDE device for the I/O
62  *      @uptodate: 
63  *
64  *      This is our end_request wrapper function. We complete the I/O
65  *      update random number input and dequeue the request.
66  */
67  
68 int ide_end_request (ide_drive_t *drive, int uptodate)
69 {
70         struct request *rq;
71         unsigned long flags;
72         int ret = 1;
73
74         spin_lock_irqsave(&io_request_lock, flags);
75         rq = HWGROUP(drive)->rq;
76
77         /*
78          * decide whether to reenable DMA -- 3 is a random magic for now,
79          * if we DMA timeout more than 3 times, just stay in PIO
80          */
81         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
82                 drive->state = 0;
83                 HWGROUP(drive)->hwif->ide_dma_on(drive);
84         }
85
86         if (!end_that_request_first(rq, uptodate, drive->name)) {
87                 add_blkdev_randomness(MAJOR(rq->rq_dev));
88                 blkdev_dequeue_request(rq);
89                 HWGROUP(drive)->rq = NULL;
90                 end_that_request_last(rq);
91                 ret = 0;
92         }
93
94         spin_unlock_irqrestore(&io_request_lock, flags);
95         return ret;
96 }
97
98 EXPORT_SYMBOL(ide_end_request);
99
100 /**
101  *      ide_end_drive_cmd       -       end an explicit drive command
102  *      @drive: command 
103  *      @stat: status bits
104  *      @err: error bits
105  *
106  *      Clean up after success/failure of an explicit drive command.
107  *      These get thrown onto the queue so they are synchronized with
108  *      real I/O operations on the drive.
109  *
110  *      In LBA48 mode we have to read the register set twice to get
111  *      all the extra information out.
112  */
113  
114 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
115 {
116         ide_hwif_t *hwif = HWIF(drive);
117         unsigned long flags;
118         struct request *rq;
119
120         spin_lock_irqsave(&io_request_lock, flags);
121         rq = HWGROUP(drive)->rq;
122         spin_unlock_irqrestore(&io_request_lock, flags);
123
124         switch(rq->cmd) {
125                 case IDE_DRIVE_CMD:
126                 {
127                         u8 *args = (u8 *) rq->buffer;
128                         if (rq->errors == 0)
129                                 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
130
131                         if (args) {
132                                 args[0] = stat;
133                                 args[1] = err;
134                                 args[2] = hwif->INB(IDE_NSECTOR_REG);
135                         }
136                         break;
137                 }
138                 case IDE_DRIVE_TASK:
139                 {
140                         u8 *args = (u8 *) rq->buffer;
141                         if (rq->errors == 0)
142                                 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
143
144                         if (args) {
145                                 args[0] = stat;
146                                 args[1] = err;
147                                 args[2] = hwif->INB(IDE_NSECTOR_REG);
148                                 args[3] = hwif->INB(IDE_SECTOR_REG);
149                                 args[4] = hwif->INB(IDE_LCYL_REG);
150                                 args[5] = hwif->INB(IDE_HCYL_REG);
151                                 args[6] = hwif->INB(IDE_SELECT_REG);
152                         }
153                         break;
154                 }
155                 case IDE_DRIVE_TASKFILE:
156                 {
157                         ide_task_t *args = (ide_task_t *) rq->special;
158                         if (rq->errors == 0)
159                                 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
160                                 
161                         if (args) {
162                                 if (args->tf_in_flags.b.data) {
163                                         u16 data                        = hwif->INW(IDE_DATA_REG);
164                                         args->tfRegister[IDE_DATA_OFFSET]       = (data) & 0xFF;
165                                         args->hobRegister[IDE_DATA_OFFSET_HOB]  = (data >> 8) & 0xFF;
166                                 }
167                                 args->tfRegister[IDE_ERROR_OFFSET]   = err;
168                                 args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG);
169                                 args->tfRegister[IDE_SECTOR_OFFSET]  = hwif->INB(IDE_SECTOR_REG);
170                                 args->tfRegister[IDE_LCYL_OFFSET]    = hwif->INB(IDE_LCYL_REG);
171                                 args->tfRegister[IDE_HCYL_OFFSET]    = hwif->INB(IDE_HCYL_REG);
172                                 args->tfRegister[IDE_SELECT_OFFSET]  = hwif->INB(IDE_SELECT_REG);
173                                 args->tfRegister[IDE_STATUS_OFFSET]  = stat;
174
175                                 if (drive->addressing == 1) {
176                                         hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG_HOB);
177                                         args->hobRegister[IDE_FEATURE_OFFSET_HOB] = hwif->INB(IDE_FEATURE_REG);
178                                         args->hobRegister[IDE_NSECTOR_OFFSET_HOB] = hwif->INB(IDE_NSECTOR_REG);
179                                         args->hobRegister[IDE_SECTOR_OFFSET_HOB]  = hwif->INB(IDE_SECTOR_REG);
180                                         args->hobRegister[IDE_LCYL_OFFSET_HOB]    = hwif->INB(IDE_LCYL_REG);
181                                         args->hobRegister[IDE_HCYL_OFFSET_HOB]    = hwif->INB(IDE_HCYL_REG);
182                                 }
183                         }
184                         break;
185                 }
186                 default:
187                         break;
188         }
189         spin_lock_irqsave(&io_request_lock, flags);
190         blkdev_dequeue_request(rq);
191         HWGROUP(drive)->rq = NULL;
192         end_that_request_last(rq);
193         spin_unlock_irqrestore(&io_request_lock, flags);
194 }
195
196 EXPORT_SYMBOL(ide_end_drive_cmd);
197
198 /**
199  *      try_to_flush_leftover_data      -       flush junk
200  *      @drive: drive to flush
201  *
202  *      try_to_flush_leftover_data() is invoked in response to a drive
203  *      unexpectedly having its DRQ_STAT bit set.  As an alternative to
204  *      resetting the drive, this routine tries to clear the condition
205  *      by read a sector's worth of data from the drive.  Of course,
206  *      this may not help if the drive is *waiting* for data from *us*.
207  */
208
209 void try_to_flush_leftover_data (ide_drive_t *drive)
210 {
211         int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
212
213         if (drive->media != ide_disk)
214                 return;
215         while (i > 0) {
216                 u32 buffer[16];
217                 u32 wcount = (i > 16) ? 16 : i;
218
219                 i -= wcount;
220                 HWIF(drive)->ata_input_data(drive, buffer, wcount);
221         }
222 }
223
224 EXPORT_SYMBOL(try_to_flush_leftover_data);
225
226 /*
227  * FIXME Add an ATAPI error
228  */
229
230 /**
231  *      ide_error       -       handle an error on the IDE
232  *      @drive: drive the error occurred on
233  *      @msg: message to report
234  *      @stat: status bits
235  *
236  *      ide_error() takes action based on the error returned by the drive.
237  *      For normal I/O that may well include retries. We deal with
238  *      both new-style (taskfile) and old style command handling here.
239  *      In the case of taskfile command handling there is work left to
240  *      do
241  */
242  
243 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
244 {
245         ide_hwif_t *hwif;
246         struct request *rq;
247         u8 err;
248
249         err = ide_dump_status(drive, msg, stat);
250         if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
251                 return ide_stopped;
252
253         hwif = HWIF(drive);
254         /* retry only "normal" I/O: */
255         if (rq->cmd == IDE_DRIVE_CMD || rq->cmd == IDE_DRIVE_TASK) {
256                 rq->errors = 1;
257                 ide_end_drive_cmd(drive, stat, err);
258                 return ide_stopped;
259         }
260         if (rq->cmd == IDE_DRIVE_TASKFILE) {
261                 rq->errors = 1;
262                 ide_end_drive_cmd(drive, stat, err);
263 //              ide_end_taskfile(drive, stat, err);
264                 return ide_stopped;
265         }
266
267         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
268                  /* other bits are useless when BUSY */
269                 rq->errors |= ERROR_RESET;
270         } else {
271                 if (drive->media != ide_disk)
272                         goto media_out;
273
274                 if (stat & ERR_STAT) {
275                         /* err has different meaning on cdrom and tape */
276                         if (err == ABRT_ERR) {
277                                 if (drive->select.b.lba &&
278                                     (hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY))
279                                         /* some newer drives don't
280                                          * support WIN_SPECIFY
281                                          */
282                                         return ide_stopped;
283                         } else if ((err & BAD_CRC) == BAD_CRC) {
284                                 drive->crc_count++;
285                                 /* UDMA crc error -- just retry the operation */
286                         } else if (err & (BBD_ERR | ECC_ERR)) {
287                                 /* retries won't help these */
288                                 rq->errors = ERROR_MAX;
289                         } else if (err & TRK0_ERR) {
290                                 /* help it find track zero */
291                                 rq->errors |= ERROR_RECAL;
292                         }
293                 }
294 media_out:
295                 if ((stat & DRQ_STAT) && rq->cmd != WRITE)
296                         try_to_flush_leftover_data(drive);
297         }
298         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT)) {
299                 /* force an abort */
300                 hwif->OUTB(WIN_IDLEIMMEDIATE,IDE_COMMAND_REG);
301         }
302         if (rq->errors >= ERROR_MAX) {
303                 DRIVER(drive)->end_request(drive, 0);
304         } else {
305                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
306                         ++rq->errors;
307                         return ide_do_reset(drive);
308                 }
309                 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
310                         drive->special.b.recalibrate = 1;
311                 ++rq->errors;
312         }
313         return ide_stopped;
314 }
315
316 EXPORT_SYMBOL(ide_error);
317
318 /**
319  *      ide_abort       -       abort pending IDE operatins
320  *      @drive: drive the error occurred on
321  *      @msg: message to report
322  *
323  *      ide_abort kills and cleans up when we are about to do a 
324  *      host initiated reset on active commands. Longer term we
325  *      want handlers to have sensible abort handling themselves
326  *
327  *      This differs fundamentally from ide_error because in 
328  *      this case the command is doing just fine when we
329  *      blow it away.
330  */
331  
332 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
333 {
334         ide_hwif_t *hwif;
335         struct request *rq;
336
337         if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
338                 return ide_stopped;
339
340         hwif = HWIF(drive);
341         /* retry only "normal" I/O: */
342         if (rq->cmd == IDE_DRIVE_CMD || rq->cmd == IDE_DRIVE_TASK) {
343                 rq->errors = 1;
344                 ide_end_drive_cmd(drive, BUSY_STAT, 0);
345                 return ide_stopped;
346         }
347         if (rq->cmd == IDE_DRIVE_TASKFILE) {
348                 rq->errors = 1;
349                 ide_end_drive_cmd(drive, BUSY_STAT, 0);
350 //              ide_end_taskfile(drive, BUSY_STAT, 0);
351                 return ide_stopped;
352         }
353
354         rq->errors |= ERROR_RESET;
355         DRIVER(drive)->end_request(drive, 0);
356         return ide_stopped;
357 }
358
359 EXPORT_SYMBOL(ide_abort);
360
361 /**
362  *      ide_cmd         -       issue a simple drive command
363  *      @drive: drive the command is for
364  *      @cmd: command byte
365  *      @nsect: sector byte
366  *      @handler: handler for the command completion
367  *
368  *      Issue a simple drive command with interrupts.
369  *      The drive must be selected beforehand.
370  */
371
372 void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect, ide_handler_t *handler)
373 {
374         ide_hwif_t *hwif = HWIF(drive);
375         if (IDE_CONTROL_REG)
376                 hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */
377         SELECT_MASK(drive,0);
378         hwif->OUTB(nsect,IDE_NSECTOR_REG);
379         ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL);
380 }
381
382 EXPORT_SYMBOL(ide_cmd);
383
384 /**
385  *      drive_cmd_intr          -       drive command completion interrupt
386  *      @drive: drive the completion interrupt occurred on
387  *
388  *      drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
389  *      We do any neccessary daya reading and then wait for the drive to
390  *      go non busy. At that point we may read the error data and complete
391  *      the request
392  */
393  
394 ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
395 {
396         struct request *rq = HWGROUP(drive)->rq;
397         ide_hwif_t *hwif = HWIF(drive);
398         u8 *args = (u8 *) rq->buffer;
399         u8 stat = hwif->INB(IDE_STATUS_REG);
400         int retries = 10;
401
402         local_irq_enable();
403         if ((stat & DRQ_STAT) && args && args[3]) {
404                 u8 io_32bit = drive->io_32bit;
405                 drive->io_32bit = 0;
406                 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
407                 drive->io_32bit = io_32bit;
408                 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
409                         udelay(100);
410         }
411
412         if (!OK_STAT(stat, READY_STAT, BAD_STAT))
413                 return DRIVER(drive)->error(drive, "drive_cmd", stat);
414                 /* calls ide_end_drive_cmd */
415         ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
416         return ide_stopped;
417 }
418
419 EXPORT_SYMBOL(drive_cmd_intr);
420
421 /**
422  *      do_special              -       issue some special commands
423  *      @drive: drive the command is for
424  *
425  *      do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
426  *      commands to a drive.  It used to do much more, but has been scaled
427  *      back.
428  */
429
430 ide_startstop_t do_special (ide_drive_t *drive)
431 {
432         special_t *s = &drive->special;
433
434 #ifdef DEBUG
435         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
436 #endif
437         if (s->b.set_tune) {
438                 s->b.set_tune = 0;
439                 if (HWIF(drive)->tuneproc != NULL)
440                         HWIF(drive)->tuneproc(drive, drive->tune_req);
441                 return ide_stopped;
442         }
443         else
444                 return DRIVER(drive)->special(drive);
445 }
446
447 EXPORT_SYMBOL(do_special);
448
449 /**
450  *      execute_drive_command   -       issue special drive command
451  *      @drive: the drive to issue th command on
452  *      @rq: the request structure holding the command
453  *
454  *      execute_drive_cmd() issues a special drive command,  usually 
455  *      initiated by ioctl() from the external hdparm program. The
456  *      command can be a drive command, drive task or taskfile 
457  *      operation. Weirdly you can call it with NULL to wait for
458  *      all commands to finish. Don't do this as that is due to change
459  */
460
461 ide_startstop_t execute_drive_cmd (ide_drive_t *drive, struct request *rq)
462 {
463         ide_hwif_t *hwif = HWIF(drive);
464         switch(rq->cmd) {
465                 case IDE_DRIVE_TASKFILE:
466                 {
467                         ide_task_t *args = rq->special;
468  
469                         if (!(args)) break;
470  
471                         if (args->tf_out_flags.all != 0) 
472                                 return flagged_taskfile(drive, args);
473                         return do_rw_taskfile(drive, args);
474                 }
475                 case IDE_DRIVE_TASK:
476                 {
477                         u8 *args = rq->buffer;
478                         u8 sel;
479  
480                         if (!(args)) break;
481 #ifdef DEBUG
482                         printk("%s: DRIVE_TASK_CMD ", drive->name);
483                         printk("cmd=0x%02x ", args[0]);
484                         printk("fr=0x%02x ", args[1]);
485                         printk("ns=0x%02x ", args[2]);
486                         printk("sc=0x%02x ", args[3]);
487                         printk("lcyl=0x%02x ", args[4]);
488                         printk("hcyl=0x%02x ", args[5]);
489                         printk("sel=0x%02x\n", args[6]);
490 #endif
491                         hwif->OUTB(args[1], IDE_FEATURE_REG);
492                         hwif->OUTB(args[3], IDE_SECTOR_REG);
493                         hwif->OUTB(args[4], IDE_LCYL_REG);
494                         hwif->OUTB(args[5], IDE_HCYL_REG);
495                         sel = (args[6] & ~0x10);
496                         if (drive->select.b.unit)
497                                 sel |= 0x10;
498                         hwif->OUTB(sel, IDE_SELECT_REG);
499                         ide_cmd(drive, args[0], args[2], &drive_cmd_intr);
500                         return ide_started;
501                 }
502                 case IDE_DRIVE_CMD:
503                 {
504                         u8 *args = rq->buffer;
505  
506                         if (!(args)) break;
507 #ifdef DEBUG
508                         printk("%s: DRIVE_CMD ", drive->name);
509                         printk("cmd=0x%02x ", args[0]);
510                         printk("sc=0x%02x ", args[1]);
511                         printk("fr=0x%02x ", args[2]);
512                         printk("xx=0x%02x\n", args[3]);
513 #endif
514                         if (args[0] == WIN_SMART) {
515                                 hwif->OUTB(0x4f, IDE_LCYL_REG);
516                                 hwif->OUTB(0xc2, IDE_HCYL_REG);
517                                 hwif->OUTB(args[2],IDE_FEATURE_REG);
518                                 hwif->OUTB(args[1],IDE_SECTOR_REG);
519                                 ide_cmd(drive, args[0], args[3], &drive_cmd_intr);
520                                 return ide_started;
521                         }
522                         hwif->OUTB(args[2],IDE_FEATURE_REG);
523                         ide_cmd(drive, args[0], args[1], &drive_cmd_intr);
524                         return ide_started;
525                 }
526                 default:
527                         break;
528         }
529         /*
530          * NULL is actually a valid way of waiting for
531          * all current requests to be flushed from the queue.
532          */
533 #ifdef DEBUG
534         printk("%s: DRIVE_CMD (null)\n", drive->name);
535 #endif
536         ide_end_drive_cmd(drive,
537                         hwif->INB(IDE_STATUS_REG),
538                         hwif->INB(IDE_ERROR_REG));
539         return ide_stopped;
540 }
541
542 EXPORT_SYMBOL(execute_drive_cmd);
543
544 /**
545  *      ide_start_request       -       start of I/O and command issuing for IDE
546  *
547  *      ide_start_request() initiates handling of a new I/O request. It
548  *      accepts commands and I/O (read/write) requests. It also does
549  *      the final remapping for weird stuff like EZDrive. Once 
550  *      device mapper can work sector level the EZDrive stuff can go away
551  *
552  *      FIXME: this function needs a rename
553  */
554  
555 static ide_startstop_t ide_start_request (ide_drive_t *drive, struct request *rq)
556 {
557         ide_startstop_t startstop;
558         unsigned long block, blockend;
559         unsigned int minor = MINOR(rq->rq_dev), unit = minor >> PARTN_BITS;
560         ide_hwif_t *hwif = HWIF(drive);
561
562 #ifdef DEBUG
563         printk("%s: ide_start_request: current=0x%08lx\n",
564                 hwif->name, (unsigned long) rq);
565 #endif
566
567         /* bail early if we've exceeded max_failures */
568         if (!drive->present || (drive->max_failures && (drive->failures > drive->max_failures))) {
569                 goto kill_rq;
570         }
571
572         /*
573          * bail early if we've sent a device to sleep, however how to wake
574          * this needs to be a masked flag.  FIXME for proper operations.
575          */
576         if (drive->suspend_reset) {
577                 goto kill_rq;
578         }
579
580         if (unit >= MAX_DRIVES) {
581                 printk(KERN_ERR "%s: bad device number: %s\n",
582                         hwif->name, kdevname(rq->rq_dev));
583                 goto kill_rq;
584         }
585 #ifdef DEBUG
586         if (rq->bh && !buffer_locked(rq->bh)) {
587                 printk(KERN_ERR "%s: block not locked\n", drive->name);
588                 goto kill_rq;
589         }
590 #endif
591         block    = rq->sector;
592         blockend = block + rq->nr_sectors;
593
594         if (blk_fs_request(rq) &&
595             (drive->media == ide_disk || drive->media == ide_floppy)) {
596                 if ((blockend < block) || (blockend > drive->part[minor&PARTN_MASK].nr_sects)) {
597                         printk(KERN_ERR "%s%c: bad access: block=%ld, count=%ld\n", drive->name,
598                          (minor&PARTN_MASK)?'0'+(minor&PARTN_MASK):' ', block, rq->nr_sectors);
599                         goto kill_rq;
600                 }
601                 block += drive->part[minor&PARTN_MASK].start_sect + drive->sect0;
602         }
603         /* Yecch - this will shift the entire interval,
604            possibly killing some innocent following sector */
605         if (block == 0 && drive->remap_0_to_1 == 1)
606                 block = 1;  /* redirect MBR access to EZ-Drive partn table */
607
608         SELECT_DRIVE(drive);
609         if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
610                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
611                 return startstop;
612         }
613         if (!drive->special.all) {
614                 switch(rq->cmd) {
615                         case IDE_DRIVE_CMD:
616                         case IDE_DRIVE_TASK:
617                                 return execute_drive_cmd(drive, rq);
618                         case IDE_DRIVE_TASKFILE:
619                                 return execute_drive_cmd(drive, rq);
620                         default:
621                                 break;
622                 }
623                 return (DRIVER(drive)->do_request(drive, rq, block));
624         }
625         return do_special(drive);
626 kill_rq:
627         DRIVER(drive)->end_request(drive, 0);
628         return ide_stopped;
629 }
630
631 /**
632  *      ide_stall_queue         -       pause an IDE device
633  *      @drive: drive to stall
634  *      @timeout: time to stall for (jiffies)
635  *
636  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
637  *      to the hwgroup by sleeping for timeout jiffies.
638  */
639  
640 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
641 {
642         if (timeout > WAIT_WORSTCASE)
643                 timeout = WAIT_WORSTCASE;
644         drive->sleep = timeout + jiffies;
645 }
646
647 EXPORT_SYMBOL(ide_stall_queue);
648
649 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
650
651 /**
652  *      choose_drive            -       select a drive to service
653  *      @hwgroup: hardware group to select on
654  *
655  *      choose_drive() selects the next drive which will be serviced.
656  *      This is neccessary because the IDE layer can't issue commands
657  *      to both drives on the same cable, unlike SCSI.
658  */
659  
660 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
661 {
662         ide_drive_t *drive, *best;
663
664 repeat: 
665         best = NULL;
666         drive = hwgroup->drive;
667         do {
668                 if (!blk_queue_empty(&drive->queue) && (!drive->sleep || time_after_eq(jiffies, drive->sleep))) {
669                         if (!best
670                          || (drive->sleep && (!best->sleep || 0 < (signed long)(best->sleep - drive->sleep)))
671                          || (!best->sleep && 0 < (signed long)(WAKEUP(best) - WAKEUP(drive))))
672                         {
673                                 if (!blk_queue_plugged(&drive->queue))
674                                         best = drive;
675                         }
676                 }
677         } while ((drive = drive->next) != hwgroup->drive);
678         if (best && best->nice1 && !best->sleep && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
679                 long t = (signed long)(WAKEUP(best) - jiffies);
680                 if (t >= WAIT_MIN_SLEEP) {
681                 /*
682                  * We *may* have some time to spare, but first let's see if
683                  * someone can potentially benefit from our nice mood today..
684                  */
685                         drive = best->next;
686                         do {
687                                 if (!drive->sleep
688                                  && 0 < (signed long)(WAKEUP(drive) - (jiffies - best->service_time))
689                                  && 0 < (signed long)((jiffies + t) - WAKEUP(drive)))
690                                 {
691                                         ide_stall_queue(best, IDE_MIN(t, 10 * WAIT_MIN_SLEEP));
692                                         goto repeat;
693                                 }
694                         } while ((drive = drive->next) != best);
695                 }
696         }
697         return best;
698 }
699
700 /*
701  * Issue a new request to a drive from hwgroup
702  * Caller must have already done spin_lock_irqsave(&io_request_lock, ..);
703  *
704  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
705  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
706  * may have both interfaces in a single hwgroup to "serialize" access.
707  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
708  * together into one hwgroup for serialized access.
709  *
710  * Note also that several hwgroups can end up sharing a single IRQ,
711  * possibly along with many other devices.  This is especially common in
712  * PCI-based systems with off-board IDE controller cards.
713  *
714  * The IDE driver uses the single global io_request_lock spinlock to protect
715  * access to the request queues, and to protect the hwgroup->busy flag.
716  *
717  * The first thread into the driver for a particular hwgroup sets the
718  * hwgroup->busy flag to indicate that this hwgroup is now active,
719  * and then initiates processing of the top request from the request queue.
720  *
721  * Other threads attempting entry notice the busy setting, and will simply
722  * queue their new requests and exit immediately.  Note that hwgroup->busy
723  * remains set even when the driver is merely awaiting the next interrupt.
724  * Thus, the meaning is "this hwgroup is busy processing a request".
725  *
726  * When processing of a request completes, the completing thread or IRQ-handler
727  * will start the next request from the queue.  If no more work remains,
728  * the driver will clear the hwgroup->busy flag and exit.
729  *
730  * The io_request_lock (spinlock) is used to protect all access to the
731  * hwgroup->busy flag, but is otherwise not needed for most processing in
732  * the driver.  This makes the driver much more friendlier to shared IRQs
733  * than previous designs, while remaining 100% (?) SMP safe and capable.
734  */
735 /* --BenH: made non-static as ide-pmac.c uses it to kick the hwgroup back
736  *         into life on wakeup from machine sleep.
737  */ 
738 void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
739 {
740         ide_drive_t     *drive;
741         ide_hwif_t      *hwif;
742         struct request  *rq;
743         ide_startstop_t startstop;
744
745         /* for atari only: POSSIBLY BROKEN HERE(?) */
746         ide_get_lock(ide_intr, hwgroup);
747
748         /* necessary paranoia: ensure IRQs are masked on local CPU */
749         local_irq_disable();
750
751         while (!hwgroup->busy) {
752                 hwgroup->busy = 1;
753                 drive = choose_drive(hwgroup);
754                 if (drive == NULL) {
755                         unsigned long sleep = 0;
756                         hwgroup->rq = NULL;
757                         drive = hwgroup->drive;
758                         do {
759                                 if (drive->sleep && (!sleep || 0 < (signed long)(sleep - drive->sleep)))
760                                         sleep = drive->sleep;
761                         } while ((drive = drive->next) != hwgroup->drive);
762                         if (sleep) {
763                 /*
764                  * Take a short snooze, and then wake up this hwgroup again.
765                  * This gives other hwgroups on the same a chance to
766                  * play fairly with us, just in case there are big differences
767                  * in relative throughputs.. don't want to hog the cpu too much.
768                  */
769                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
770                                         sleep = jiffies + WAIT_MIN_SLEEP;
771 #if 1
772                                 if (timer_pending(&hwgroup->timer))
773                                         printk(KERN_ERR "ide_set_handler: timer already active\n");
774 #endif
775                                 /* so that ide_timer_expiry knows what to do */
776                                 hwgroup->sleeping = 1;
777                                 mod_timer(&hwgroup->timer, sleep);
778                                 /* we purposely leave hwgroup->busy==1
779                                  * while sleeping */
780                         } else {
781                                 /* Ugly, but how can we sleep for the lock
782                                  * otherwise? perhaps from tq_disk?
783                                  */
784
785                                 /* for atari only */
786                                 ide_release_lock();
787                                 hwgroup->busy = 0;
788                         }
789                         /* no more work for this hwgroup (for now) */
790                         return;
791                 }
792                 hwif = HWIF(drive);
793                 if (hwgroup->hwif->sharing_irq &&
794                     hwif != hwgroup->hwif &&
795                     hwif->io_ports[IDE_CONTROL_OFFSET]) {
796                         /* set nIEN for previous hwif */
797                         SELECT_INTERRUPT(drive);
798                 }
799                 hwgroup->hwif = hwif;
800                 hwgroup->drive = drive;
801                 drive->sleep = 0;
802                 drive->service_start = jiffies;
803
804                 /* paranoia */
805                 if (blk_queue_plugged(&drive->queue))
806                         printk(KERN_ERR "%s: Huh? nuking plugged queue\n", drive->name);
807
808                 rq = blkdev_entry_next_request(&drive->queue.queue_head);
809                 hwgroup->rq = rq;
810                 /*
811                  * Some systems have trouble with IDE IRQs arriving while
812                  * the driver is still setting things up.  So, here we disable
813                  * the IRQ used by this interface while the request is being started.
814                  * This may look bad at first, but pretty much the same thing
815                  * happens anyway when any interrupt comes in, IDE or otherwise
816                  *  -- the kernel masks the IRQ while it is being handled.
817                  */
818                 if (hwif->irq != masked_irq)
819                         disable_irq_nosync(hwif->irq);
820                 spin_unlock(&io_request_lock);
821                 local_irq_enable();
822                         /* allow other IRQs while we start this request */
823                 startstop = ide_start_request(drive, rq);
824                 spin_lock_irq(&io_request_lock);
825                 if (hwif->irq != masked_irq)
826                         enable_irq(hwif->irq);
827                 if (startstop == ide_stopped)
828                         hwgroup->busy = 0;
829         }
830 }
831
832 EXPORT_SYMBOL(ide_do_request);
833
834 /*
835  * ide_get_queue() returns the queue which corresponds to a given device.
836  */
837 request_queue_t *ide_get_queue (kdev_t dev)
838 {
839         ide_hwif_t *hwif = (ide_hwif_t *)blk_dev[MAJOR(dev)].data;
840
841         return &hwif->drives[DEVICE_NR(dev) & 1].queue;
842 }
843
844 EXPORT_SYMBOL(ide_get_queue);
845
846 /*
847  * Passes the stuff to ide_do_request
848  */
849 void do_ide_request(request_queue_t *q)
850 {
851         ide_do_request(q->queuedata, IDE_NO_IRQ);
852 }
853
854 EXPORT_SYMBOL(do_ide_request);
855
856 /*
857  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
858  * retry the current request in pio mode instead of risking tossing it
859  * all away
860  */
861 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
862 {
863         ide_hwif_t *hwif = HWIF(drive);
864         struct request *rq;
865         ide_startstop_t ret = ide_stopped;
866
867         /*
868          * end current dma transaction
869          */
870         (void) hwif->ide_dma_end(drive);
871
872         /*
873          * complain a little, later we might remove some of this verbosity
874          */
875
876         if (error < 0) {
877                 printk(KERN_ERR "%s: error waiting for DMA\n", drive->name);
878                 (void)HWIF(drive)->ide_dma_end(drive);
879                 ret = DRIVER(drive)->error(drive, "dma timeout retry",
880                                 hwif->INB(IDE_STATUS_REG));
881         } else {
882                 printk(KERN_ERR "%s: timeout waiting for DMA\n", drive->name);
883                 (void) hwif->ide_dma_timeout(drive);
884         }
885
886         /*
887          * disable dma for now, but remember that we did so because of
888          * a timeout -- we'll reenable after we finish this next request
889          * (or rather the first chunk of it) in pio.
890          */
891         drive->retry_pio++;
892         drive->state = DMA_PIO_RETRY;
893         (void) hwif->ide_dma_off_quietly(drive);
894
895         /*
896          * un-busy drive etc (hwgroup->busy is cleared on return) and
897          * make sure request is sane
898          */
899         rq = HWGROUP(drive)->rq;
900         HWGROUP(drive)->rq = NULL;
901
902         if (rq) {
903                 rq->errors = 0;
904                 rq->sector = rq->bh->b_rsector;
905                 rq->current_nr_sectors = rq->bh->b_size >> 9;
906                 rq->hard_cur_sectors = rq->current_nr_sectors;
907                 rq->buffer = rq->bh->b_data;
908         }
909
910         return ret;
911 }
912
913 /**
914  *      ide_timer_expiry        -       handle lack of an IDE interrupt
915  *      @data: timer callback magic (hwgroup)
916  *
917  *      An IDE command has timed out before the expected drive return
918  *      occurred. At this point we attempt to clean up the current
919  *      mess. If the current handler includes an expiry handler then
920  *      we invoke the expiry handler, and providing it is happy the
921  *      work is done. If that fails we apply generic recovery rules
922  *      invoking the handler and checking the drive DMA status. We
923  *      have an excessively incestuous relationship with the DMA
924  *      logic that wants cleaning up.
925  */
926  
927 void ide_timer_expiry (unsigned long data)
928 {
929         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
930         ide_handler_t   *handler;
931         ide_expiry_t    *expiry;
932         unsigned long   flags;
933         unsigned long   wait = -1;
934
935         spin_lock_irqsave(&io_request_lock, flags);
936
937         if ((handler = hwgroup->handler) == NULL) {
938                 /*
939                  * Either a marginal timeout occurred
940                  * (got the interrupt just as timer expired),
941                  * or we were "sleeping" to give other devices a chance.
942                  * Either way, we don't really want to complain about anything.
943                  */
944                 if (hwgroup->sleeping) {
945                         hwgroup->sleeping = 0;
946                         hwgroup->busy = 0;
947                 }
948         } else {
949                 ide_drive_t *drive = hwgroup->drive;
950                 if (!drive) {
951                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
952                         hwgroup->handler = NULL;
953                 } else {
954                         ide_hwif_t *hwif;
955                         ide_startstop_t startstop = ide_stopped;
956                         if (!hwgroup->busy) {
957                                 hwgroup->busy = 1;      /* paranoia */
958                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
959                         }
960                         if ((expiry = hwgroup->expiry) != NULL) {
961                                 /* continue */
962                                 if ((wait = expiry(drive)) > 0) {
963                                         /* reset timer */
964                                         hwgroup->timer.expires  = jiffies + wait;
965                                         add_timer(&hwgroup->timer);
966                                         spin_unlock_irqrestore(&io_request_lock, flags);
967                                         return;
968                                 }
969                         }
970                         hwgroup->handler = NULL;
971                         /*
972                          * We need to simulate a real interrupt when invoking
973                          * the handler() function, which means we need to
974                          * globally mask the specific IRQ:
975                          */
976                         spin_unlock(&io_request_lock);
977                         hwif  = HWIF(drive);
978 #if DISABLE_IRQ_NOSYNC
979                         disable_irq_nosync(hwif->irq);
980 #else
981                         /* disable_irq_nosync ?? */
982                         disable_irq(hwif->irq);
983 #endif /* DISABLE_IRQ_NOSYNC */
984
985                         /* local CPU only,
986                          * as if we were handling an interrupt */
987                         local_irq_disable();
988                         if (hwgroup->poll_timeout != 0) {
989                                 startstop = handler(drive);
990                         } else if (drive_is_ready(drive)) {
991                                 if (drive->waiting_for_dma)
992                                         (void) hwgroup->hwif->ide_dma_lostirq(drive);
993                                 (void)ide_ack_intr(hwif);
994                                 printk(KERN_ERR "%s: lost interrupt\n", drive->name);
995                                 startstop = handler(drive);
996                         } else {
997                                 if (drive->waiting_for_dma) {
998                                         startstop = ide_dma_timeout_retry(drive, wait);
999                                 } else {
1000                                         startstop = DRIVER(drive)->error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1001                                 }
1002                         }
1003                         drive->service_time = jiffies - drive->service_start;
1004                         spin_lock_irq(&io_request_lock);
1005                         enable_irq(hwif->irq);
1006                         if (startstop == ide_stopped)
1007                                 hwgroup->busy = 0;
1008                 }
1009         }
1010         ide_do_request(hwgroup, IDE_NO_IRQ);
1011         spin_unlock_irqrestore(&io_request_lock, flags);
1012 }
1013
1014 EXPORT_SYMBOL(ide_timer_expiry);
1015
1016 /**
1017  *      unexpected_intr         -       handle an unexpected IDE interrupt
1018  *      @irq: interrupt line
1019  *      @hwgroup: hwgroup being processed
1020  *
1021  *      There's nothing really useful we can do with an unexpected interrupt,
1022  *      other than reading the status register (to clear it), and logging it.
1023  *      There should be no way that an irq can happen before we're ready for it,
1024  *      so we needn't worry much about losing an "important" interrupt here.
1025  *
1026  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1027  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1028  *      looks "good", we just ignore the interrupt completely.
1029  *
1030  *      This routine assumes __cli() is in effect when called.
1031  *
1032  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1033  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1034  *      we could screw up by interfering with a new request being set up for 
1035  *      irq15.
1036  *
1037  *      In reality, this is a non-issue.  The new command is not sent unless 
1038  *      the drive is ready to accept one, in which case we know the drive is
1039  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1040  *      before completing the issuance of any new drive command, so we will not
1041  *      be accidentally invoked as a result of any valid command completion
1042  *      interrupt.
1043  *
1044  *      Note that we must walk the entire hwgroup here. We know which hwif
1045  *      is doing the current command, but we don't know which hwif burped
1046  *      mysteriously.
1047  */
1048  
1049 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1050 {
1051         u8 stat;
1052         ide_hwif_t *hwif = hwgroup->hwif;
1053
1054         /*
1055          * handle the unexpected interrupt
1056          */
1057         do {
1058                 if (hwif->irq == irq) {
1059                         stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1060                         if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1061                                 /* Try to not flood the console with msgs */
1062                                 static unsigned long last_msgtime, count;
1063                                 ++count;
1064                                 if (time_after(jiffies, last_msgtime + HZ)) {
1065                                         last_msgtime = jiffies;
1066                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1067                                                 "status=0x%02x, count=%ld\n",
1068                                                 hwif->name,
1069                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1070                                 }
1071                         }
1072                 }
1073         } while ((hwif = hwif->next) != hwgroup->hwif);
1074 }
1075
1076 /**
1077  *      ide_intr        -       default IDE interrupt handler
1078  *      @irq: interrupt number
1079  *      @dev_id: hwif group
1080  *      @regs: unused weirdness from the kernel irq layer
1081  *
1082  *      This is the default IRQ handler for the IDE layer. You should
1083  *      not need to override it. If you do be aware it is subtle in
1084  *      places
1085  *
1086  *      hwgroup->hwif is the interface in the group currently performing
1087  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1088  *      the IRQ handler to call. As we issue a command the handlers
1089  *      step through multiple states, reassigning the handler to the
1090  *      next step in the process. Unlike a smart SCSI controller IDE
1091  *      expects the main processor to sequence the various transfer
1092  *      stages. We also manage a poll timer to catch up with most
1093  *      timeout situations. There are still a few where the handlers
1094  *      don't ever decide to give up.
1095  *
1096  *      The handler eventually returns ide_stopped to indicate the
1097  *      request completed. At this point we issue the next request
1098  *      on the hwgroup and the process begins again.
1099  */
1100  
1101 void ide_intr (int irq, void *dev_id, struct pt_regs *regs)
1102 {
1103         unsigned long flags;
1104         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1105         ide_hwif_t *hwif;
1106         ide_drive_t *drive;
1107         ide_handler_t *handler;
1108         ide_startstop_t startstop;
1109
1110         spin_lock_irqsave(&io_request_lock, flags);
1111         hwif = hwgroup->hwif;
1112
1113         if (!ide_ack_intr(hwif)) {
1114                 spin_unlock_irqrestore(&io_request_lock, flags);
1115                 return;
1116         }
1117
1118         if ((handler = hwgroup->handler) == NULL ||
1119             hwgroup->poll_timeout != 0) {
1120                 /*
1121                  * Not expecting an interrupt from this drive.
1122                  * That means this could be:
1123                  *      (1) an interrupt from another PCI device
1124                  *      sharing the same PCI INT# as us.
1125                  * or   (2) a drive just entered sleep or standby mode,
1126                  *      and is interrupting to let us know.
1127                  * or   (3) a spurious interrupt of unknown origin.
1128                  *
1129                  * For PCI, we cannot tell the difference,
1130                  * so in that case we just ignore it and hope it goes away.
1131                  */
1132 #ifdef CONFIG_BLK_DEV_IDEPCI
1133                 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1134 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1135                 {
1136                         /*
1137                          * Probably not a shared PCI interrupt,
1138                          * so we can safely try to do something about it:
1139                          */
1140                         unexpected_intr(irq, hwgroup);
1141 #ifdef CONFIG_BLK_DEV_IDEPCI
1142                 } else {
1143                         /*
1144                          * Whack the status register, just in case
1145                          * we have a leftover pending IRQ.
1146                          */
1147                         (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1148 #endif /* CONFIG_BLK_DEV_IDEPCI */
1149                 }
1150                 spin_unlock_irqrestore(&io_request_lock, flags);
1151                 return;
1152         }
1153         drive = hwgroup->drive;
1154         if (!drive) {
1155                 /*
1156                  * This should NEVER happen, and there isn't much
1157                  * we could do about it here.
1158                  */
1159                 spin_unlock_irqrestore(&io_request_lock, flags);
1160                 return;
1161         }
1162         if (!drive_is_ready(drive)) {
1163                 /*
1164                  * This happens regularly when we share a PCI IRQ with
1165                  * another device.  Unfortunately, it can also happen
1166                  * with some buggy drives that trigger the IRQ before
1167                  * their status register is up to date.  Hopefully we have
1168                  * enough advance overhead that the latter isn't a problem.
1169                  */
1170                 spin_unlock_irqrestore(&io_request_lock, flags);
1171                 return;
1172         }
1173         if (!hwgroup->busy) {
1174                 hwgroup->busy = 1;      /* paranoia */
1175                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1176         }
1177         hwgroup->handler = NULL;
1178         del_timer(&hwgroup->timer);
1179         spin_unlock(&io_request_lock);
1180
1181         if (drive->unmask)
1182                 local_irq_enable();
1183
1184         /* service this interrupt, may set handler for next interrupt */
1185         startstop = handler(drive);
1186         spin_lock_irq(&io_request_lock);
1187
1188         /*
1189          * Note that handler() may have set things up for another
1190          * interrupt to occur soon, but it cannot happen until
1191          * we exit from this routine, because it will be the
1192          * same irq as is currently being serviced here, and Linux
1193          * won't allow another of the same (on any CPU) until we return.
1194          */
1195         drive->service_time = jiffies - drive->service_start;
1196         if (startstop == ide_stopped) {
1197                 if (hwgroup->handler == NULL) { /* paranoia */
1198                         hwgroup->busy = 0;
1199                         ide_do_request(hwgroup, hwif->irq);
1200                 } else {
1201                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1202                                 "on exit\n", drive->name);
1203                 }
1204         }
1205         spin_unlock_irqrestore(&io_request_lock, flags);
1206 }
1207
1208 EXPORT_SYMBOL(ide_intr);
1209
1210 /*
1211  * get_info_ptr() returns the (ide_drive_t *) for a given device number.
1212  * It returns NULL if the given device number does not match any present drives.
1213  */
1214 ide_drive_t *ide_info_ptr (kdev_t i_rdev, int force)
1215 {
1216         int             major = MAJOR(i_rdev);
1217         unsigned int    h;
1218
1219         for (h = 0; h < MAX_HWIFS; ++h) {
1220                 ide_hwif_t  *hwif = &ide_hwifs[h];
1221                 if (hwif->present && major == hwif->major) {
1222                         unsigned unit = DEVICE_NR(i_rdev);
1223                         if (unit < MAX_DRIVES) {
1224                                 ide_drive_t *drive = &hwif->drives[unit];
1225                                 if (drive->present || force)
1226                                         return drive;
1227                         }
1228                         break;
1229                 }
1230         }
1231         return NULL;
1232 }
1233
1234 EXPORT_SYMBOL(ide_info_ptr);
1235
1236 /**
1237  *      ide_init_drive_cmd      -       initialize a drive command request
1238  *      @rq: request object
1239  *
1240  *      Initialize a request before we fill it in and send it down to
1241  *      ide_do_drive_cmd. Commands must be set up by this function. Right
1242  *      now it doesn't do a lot, but if that changes abusers will have a
1243  *      nasty suprise.
1244  */
1245
1246 void ide_init_drive_cmd (struct request *rq)
1247 {
1248         memset(rq, 0, sizeof(*rq));
1249         rq->cmd = IDE_DRIVE_CMD;
1250 }
1251
1252 EXPORT_SYMBOL(ide_init_drive_cmd);
1253
1254 /**
1255  *      ide_do_drive_cmd        -       issue IDE special command
1256  *      @drive: device to issue command
1257  *      @rq: request to issue
1258  *      @action: action for processing
1259  *
1260  *      This function issues a special IDE device request
1261  *      onto the request queue.
1262  *
1263  *      If action is ide_wait, then the rq is queued at the end of the
1264  *      request queue, and the function sleeps until it has been processed.
1265  *      This is for use when invoked from an ioctl handler.
1266  *
1267  *      If action is ide_preempt, then the rq is queued at the head of
1268  *      the request queue, displacing the currently-being-processed
1269  *      request and this function returns immediately without waiting
1270  *      for the new rq to be completed.  This is VERY DANGEROUS, and is
1271  *      intended for careful use by the ATAPI tape/cdrom driver code.
1272  *
1273  *      If action is ide_next, then the rq is queued immediately after
1274  *      the currently-being-processed-request (if any), and the function
1275  *      returns without waiting for the new rq to be completed.  As above,
1276  *      This is VERY DANGEROUS, and is intended for careful use by the
1277  *      ATAPI tape/cdrom driver code.
1278  *
1279  *      If action is ide_end, then the rq is queued at the end of the
1280  *      request queue, and the function returns immediately without waiting
1281  *      for the new rq to be completed. This is again intended for careful
1282  *      use by the ATAPI tape/cdrom driver code.
1283  */
1284  
1285 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1286 {
1287         unsigned long flags;
1288         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1289         unsigned int major = HWIF(drive)->major;
1290         request_queue_t *q = &drive->queue;
1291         struct list_head *queue_head = &q->queue_head;
1292         DECLARE_COMPLETION(wait);
1293
1294 #ifdef CONFIG_BLK_DEV_PDC4030
1295         if (HWIF(drive)->chipset == ide_pdc4030 && rq->buffer != NULL)
1296                 return -ENOSYS;  /* special drive cmds not supported */
1297 #endif
1298         rq->errors = 0;
1299         rq->rq_status = RQ_ACTIVE;
1300         rq->rq_dev = MKDEV(major,(drive->select.b.unit)<<PARTN_BITS);
1301         if (action == ide_wait)
1302                 rq->waiting = &wait;
1303         spin_lock_irqsave(&io_request_lock, flags);
1304         if (blk_queue_empty(q) || action == ide_preempt) {
1305                 if (action == ide_preempt)
1306                         hwgroup->rq = NULL;
1307         } else {
1308                 if (action == ide_wait || action == ide_end) {
1309                         queue_head = queue_head->prev;
1310                 } else
1311                         queue_head = queue_head->next;
1312         }
1313         list_add(&rq->queue, queue_head);
1314         ide_do_request(hwgroup, IDE_NO_IRQ);
1315         spin_unlock_irqrestore(&io_request_lock, flags);
1316         if (action == ide_wait) {
1317                 /* wait for it to be serviced */
1318                 wait_for_completion(&wait);
1319                 /* return -EIO if errors */
1320                 return rq->errors ? -EIO : 0;
1321         }
1322         return 0;
1323
1324 }
1325
1326 EXPORT_SYMBOL(ide_do_drive_cmd);