import of upstream 2.4.34.4 from kernel.org
[linux-2.4.git] / drivers / scsi / aacraid / commsup.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6
7  * Adaptec aacraid device driver for Linux.
8  *
9  * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; see the file COPYING.  If not, write to
23  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  * Module Name:
26  *  commsup.c
27  *
28  * Abstract: Contain all routines that are required for FSA host/adapter
29  *    commuication.
30  *
31  *
32  */
33
34 #include <linux/config.h>
35 #include <linux/kernel.h>
36 #include <linux/init.h>
37 #include <linux/types.h>
38 #include <linux/sched.h>
39 #include <linux/pci.h>
40 #include <linux/spinlock.h>
41 #include <linux/slab.h>
42 #include <linux/completion.h>
43 #include <asm/semaphore.h>
44 #include <linux/blk.h>
45 #include <asm/uaccess.h>
46 #include "scsi.h"
47 #include "hosts.h"
48
49 #include "aacraid.h"
50
51 /**
52  *      fib_map_alloc           -       allocate the fib objects
53  *      @dev: Adapter to allocate for
54  *
55  *      Allocate and map the shared PCI space for the FIB blocks used to
56  *      talk to the Adaptec firmware.
57  */
58  
59 static int fib_map_alloc(struct aac_dev *dev)
60 {
61         if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, sizeof(struct hw_fib) * AAC_NUM_FIB, &dev->hw_fib_pa))==NULL)
62                 return -ENOMEM;
63         return 0;
64 }
65
66 /**
67  *      fib_map_free            -       free the fib objects
68  *      @dev: Adapter to free
69  *
70  *      Free the PCI mappings and the memory allocated for FIB blocks
71  *      on this adapter.
72  */
73
74 void fib_map_free(struct aac_dev *dev)
75 {
76         pci_free_consistent(dev->pdev, sizeof(struct hw_fib) * AAC_NUM_FIB, dev->hw_fib_va, dev->hw_fib_pa);
77 }
78
79 /**
80  *      fib_setup       -       setup the fibs
81  *      @dev: Adapter to set up
82  *
83  *      Allocate the PCI space for the fibs, map it and then intialise the
84  *      fib area, the unmapped fib data and also the free list
85  */
86
87 int fib_setup(struct aac_dev * dev)
88 {
89         struct fib *fibptr;
90         struct hw_fib *hw_fib_va;
91         dma_addr_t hw_fib_pa;
92         int i;
93         
94         if(fib_map_alloc(dev)<0)
95                 return -ENOMEM;
96                 
97         hw_fib_va = dev->hw_fib_va;
98         hw_fib_pa = dev->hw_fib_pa;
99         memset(hw_fib_va, 0, sizeof(struct hw_fib) * AAC_NUM_FIB);
100         /*
101          *      Initialise the fibs
102          */
103         for (i = 0, fibptr = &dev->fibs[i]; i < AAC_NUM_FIB; i++, fibptr++) 
104         {
105                 fibptr->dev = dev;
106                 fibptr->hw_fib = hw_fib_va;
107                 fibptr->data = (void *) fibptr->hw_fib->data;
108                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
109                 init_MUTEX_LOCKED(&fibptr->event_wait);
110                 spin_lock_init(&fibptr->event_lock);
111                 hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
112                 hw_fib_va->header.SenderSize = cpu_to_le16(sizeof(struct hw_fib));
113                 fibptr->hw_fib_pa = hw_fib_pa;
114                 hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + sizeof(struct hw_fib));
115                 hw_fib_pa = hw_fib_pa + sizeof(struct hw_fib); 
116         }
117         /*
118          *      Add the fib chain to the free list
119          */
120         dev->fibs[AAC_NUM_FIB-1].next = NULL;
121         /*
122          *      Enable this to debug out of queue space
123          */
124         dev->free_fib = &dev->fibs[0];
125         return 0;
126 }
127
128 /**
129  *      fib_alloc       -       allocate a fib
130  *      @dev: Adapter to allocate the fib for
131  *
132  *      Allocate a fib from the adapter fib pool. If the pool is empty we
133  *      wait for fibs to become free.
134  */
135  
136 struct fib * fib_alloc(struct aac_dev *dev)
137 {
138         struct fib * fibptr;
139         unsigned long flags;
140         
141         spin_lock_irqsave(&dev->fib_lock, flags);
142         fibptr = dev->free_fib; 
143         if(!fibptr)
144                 BUG();
145         dev->free_fib = fibptr->next;
146         spin_unlock_irqrestore(&dev->fib_lock, flags);
147         /*
148          *      Set the proper node type code and node byte size
149          */
150         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
151         fibptr->size = sizeof(struct fib);
152         /*
153          *      Null out fields that depend on being zero at the start of
154          *      each I/O
155          */
156         fibptr->hw_fib->header.XferState = cpu_to_le32(0);
157         fibptr->callback = NULL;
158         fibptr->callback_data = NULL;
159
160         return fibptr;
161 }
162
163 /**
164  *      fib_free        -       free a fib
165  *      @fibptr: fib to free up
166  *
167  *      Frees up a fib and places it on the appropriate queue
168  *      (either free or timed out)
169  */
170  
171 void fib_free(struct fib * fibptr)
172 {
173         unsigned long flags;
174
175         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
176
177         if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
178                 aac_config.fib_timeouts++;
179                 fibptr->next = fibptr->dev->timeout_fib;
180                 fibptr->dev->timeout_fib = fibptr;
181         } else {
182                 if (fibptr->hw_fib->header.XferState != 0) {
183                         printk(KERN_WARNING "fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", 
184                                  (void*)fibptr, fibptr->hw_fib->header.XferState);
185                 }
186                 fibptr->next = fibptr->dev->free_fib;
187                 fibptr->dev->free_fib = fibptr;
188         }       
189         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
190 }
191
192 /**
193  *      fib_init        -       initialise a fib
194  *      @fibptr: The fib to initialize
195  *      
196  *      Set up the generic fib fields ready for use
197  */
198  
199 void fib_init(struct fib *fibptr)
200 {
201         struct hw_fib *hw_fib = fibptr->hw_fib;
202
203         hw_fib->header.StructType = FIB_MAGIC;
204         hw_fib->header.Size = cpu_to_le16(sizeof(struct hw_fib));
205         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
206         hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */
207         hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
208         hw_fib->header.SenderSize = cpu_to_le16(sizeof(struct hw_fib));
209 }
210
211 /**
212  *      fib_deallocate          -       deallocate a fib
213  *      @fibptr: fib to deallocate
214  *
215  *      Will deallocate and return to the free pool the FIB pointed to by the
216  *      caller.
217  */
218  
219 void fib_dealloc(struct fib * fibptr)
220 {
221         struct hw_fib *hw_fib = fibptr->hw_fib;
222         if(hw_fib->header.StructType != FIB_MAGIC) 
223                 BUG();
224         hw_fib->header.XferState = cpu_to_le32(0);        
225 }
226
227 /*
228  *      Commuication primitives define and support the queuing method we use to
229  *      support host to adapter commuication. All queue accesses happen through
230  *      these routines and are the only routines which have a knowledge of the
231  *       how these queues are implemented.
232  */
233  
234 /**
235  *      aac_get_entry           -       get a queue entry
236  *      @dev: Adapter
237  *      @qid: Queue Number
238  *      @entry: Entry return
239  *      @index: Index return
240  *      @nonotify: notification control
241  *
242  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
243  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
244  *      returned.
245  */
246  
247 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
248 {
249         struct aac_queue * q;
250
251         /*
252          *      All of the queues wrap when they reach the end, so we check
253          *      to see if they have reached the end and if they have we just
254          *      set the index back to zero. This is a wrap. You could or off
255          *      the high bits in all updates but this is a bit faster I think.
256          */
257
258         q = &dev->queues->queue[qid];
259         
260         *index = le32_to_cpu(*(q->headers.producer));
261         if ((*index - 2) == le32_to_cpu(*(q->headers.consumer)))
262                         *nonotify = 1; 
263
264         if (qid == AdapHighCmdQueue) {
265                 if (*index >= ADAP_HIGH_CMD_ENTRIES)
266                         *index = 0;
267         } else if (qid == AdapNormCmdQueue) {
268                 if (*index >= ADAP_NORM_CMD_ENTRIES) 
269                         *index = 0; /* Wrap to front of the Producer Queue. */
270         }
271         else if (qid == AdapHighRespQueue) 
272         {
273                 if (*index >= ADAP_HIGH_RESP_ENTRIES)
274                         *index = 0;
275         }
276         else if (qid == AdapNormRespQueue) 
277         {
278                 if (*index >= ADAP_NORM_RESP_ENTRIES) 
279                         *index = 0; /* Wrap to front of the Producer Queue. */
280         }
281         else BUG();
282
283         if (*index + 1 == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
284                 printk(KERN_WARNING "Queue %d full, %ld outstanding.\n", qid, q->numpending);
285                 return 0;
286         } else {
287                 *entry = q->base + *index;
288                 return 1;
289         }
290 }   
291
292 /**
293  *      aac_queue_get           -       get the next free QE
294  *      @dev: Adapter
295  *      @index: Returned index
296  *      @priority: Priority of fib
297  *      @fib: Fib to associate with the queue entry
298  *      @wait: Wait if queue full
299  *      @fibptr: Driver fib object to go with fib
300  *      @nonotify: Don't notify the adapter
301  *
302  *      Gets the next free QE off the requested priorty adapter command
303  *      queue and associates the Fib with the QE. The QE represented by
304  *      index is ready to insert on the queue when this routine returns
305  *      success.
306  */
307
308 static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
309 {
310         struct aac_entry * entry = NULL;
311         int map = 0;
312         struct aac_queue * q = &dev->queues->queue[qid];
313                 
314         spin_lock_irqsave(q->lock, q->SavedIrql);
315             
316         if (qid == AdapHighCmdQueue || qid == AdapNormCmdQueue) 
317         {
318                 /*  if no entries wait for some if caller wants to */
319                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) 
320                 {
321                         printk(KERN_ERR "GetEntries failed\n");
322                 }
323                 /*
324                  *      Setup queue entry with a command, status and fib mapped
325                  */
326                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
327                 map = 1;
328         }
329         else if (qid == AdapHighRespQueue || qid == AdapNormRespQueue)
330         {
331                 while(!aac_get_entry(dev, qid, &entry, index, nonotify)) 
332                 {
333                         /* if no entries wait for some if caller wants to */
334                 }
335                 /*
336                  *      Setup queue entry with command, status and fib mapped
337                  */
338                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
339                 entry->addr = hw_fib->header.SenderFibAddress;
340                         /* Restore adapters pointer to the FIB */
341                 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;    /* Let the adapter now where to find its data */
342                 map = 0;
343         } 
344         /*
345          *      If MapFib is true than we need to map the Fib and put pointers
346          *      in the queue entry.
347          */
348         if (map)
349                 entry->addr = fibptr->hw_fib_pa;
350         return 0;
351 }
352
353
354 /**
355  *      aac_insert_entry        -       insert a queue entry
356  *      @dev: Adapter
357  *      @index: Index of entry to insert
358  *      @qid: Queue number
359  *      @nonotify: Suppress adapter notification
360  *
361  *      Gets the next free QE off the requested priorty adapter command
362  *      queue and associates the Fib with the QE. The QE represented by
363  *      index is ready to insert on the queue when this routine returns
364  *      success.
365  */
366  
367 static int aac_insert_entry(struct aac_dev * dev, u32 index, u32 qid, unsigned long nonotify) 
368 {
369         struct aac_queue * q = &dev->queues->queue[qid];
370
371         if(q == NULL)
372                 BUG();
373         *(q->headers.producer) = cpu_to_le32(index + 1);
374         spin_unlock_irqrestore(q->lock, q->SavedIrql);
375
376         if (qid == AdapHighCmdQueue ||
377             qid == AdapNormCmdQueue ||
378             qid == AdapHighRespQueue ||
379             qid == AdapNormRespQueue)
380         {
381                 if (!nonotify)
382                         aac_adapter_notify(dev, qid);
383         }
384         else
385                 printk("Suprise insert!\n");
386         return 0;
387 }
388
389 /*
390  *      Define the highest level of host to adapter communication routines. 
391  *      These routines will support host to adapter FS commuication. These 
392  *      routines have no knowledge of the commuication method used. This level
393  *      sends and receives FIBs. This level has no knowledge of how these FIBs
394  *      get passed back and forth.
395  */
396
397 /**
398  *      fib_send        -       send a fib to the adapter
399  *      @command: Command to send
400  *      @fibptr: The fib
401  *      @size: Size of fib data area
402  *      @priority: Priority of Fib
403  *      @wait: Async/sync select
404  *      @reply: True if a reply is wanted
405  *      @callback: Called with reply
406  *      @callback_data: Passed to callback
407  *
408  *      Sends the requested FIB to the adapter and optionally will wait for a
409  *      response FIB. If the caller does not wish to wait for a response than
410  *      an event to wait on must be supplied. This event will be set when a
411  *      response FIB is received from the adapter.
412  */
413  
414 int fib_send(u16 command, struct fib * fibptr, unsigned long size,  int priority, int wait, int reply, fib_callback callback, void * callback_data)
415 {
416         u32 index;
417         u32 qid;
418         struct aac_dev * dev = fibptr->dev;
419         unsigned long nointr = 0;
420         struct hw_fib * hw_fib = fibptr->hw_fib;
421         struct aac_queue * q;
422         unsigned long flags = 0;
423
424         if (!(le32_to_cpu(hw_fib->header.XferState) & HostOwned))
425                 return -EBUSY;
426         /*
427          *      There are 5 cases with the wait and reponse requested flags. 
428          *      The only invalid cases are if the caller requests to wait and
429          *      does not request a response and if the caller does not want a
430          *      response and the Fibis not allocated from pool. If a response
431          *      is not requesed the Fib will just be deallocaed by the DPC
432          *      routine when the response comes back from the adapter. No
433          *      further processing will be done besides deleting the Fib. We 
434          *      will have a debug mode where the adapter can notify the host
435          *      it had a problem and the host can log that fact.
436          */
437         if (wait && !reply) {
438                 return -EINVAL;
439         } else if (!wait && reply) {
440                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
441                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
442         } else if (!wait && !reply) {
443                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
444                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
445         } else if (wait && reply) {
446                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
447                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
448         } 
449         /*
450          *      Map the fib into 32bits by using the fib number
451          */
452
453         hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 1);
454         hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
455         /*
456          *      Set FIB state to indicate where it came from and if we want a
457          *      response from the adapter. Also load the command from the
458          *      caller.
459          *
460          *      Map the hw fib pointer as a 32bit value
461          */
462         hw_fib->header.Command = cpu_to_le16(command);
463         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
464         fibptr->hw_fib->header.Flags = 0;       /* 0 the flags field - internal only*/
465         /*
466          *      Set the size of the Fib we want to send to the adapter
467          */
468         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
469         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
470                 return -EMSGSIZE;
471         }                
472         /*
473          *      Get a queue entry connect the FIB to it and send an notify
474          *      the adapter a command is ready.
475          */
476         if (priority == FsaHigh) {
477                 hw_fib->header.XferState |= cpu_to_le32(HighPriority);
478                 qid = AdapHighCmdQueue;
479         } else {
480                 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
481                 qid = AdapNormCmdQueue;
482         }
483         q = &dev->queues->queue[qid];
484
485         if(wait)
486                 spin_lock_irqsave(&fibptr->event_lock, flags);
487         if(aac_queue_get( dev, &index, qid, hw_fib, 1, fibptr, &nointr)<0)
488                 return -EWOULDBLOCK;
489         dprintk((KERN_DEBUG "fib_send: inserting a queue entry at index %d.\n",index));
490         dprintk((KERN_DEBUG "Fib contents:.\n"));
491         dprintk((KERN_DEBUG "  Command =               %d.\n", hw_fib->header.Command));
492         dprintk((KERN_DEBUG "  XferState  =            %x.\n", hw_fib->header.XferState));
493         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib));
494         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
495         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
496         /*
497          *      Fill in the Callback and CallbackContext if we are not
498          *      going to wait.
499          */
500         if (!wait) {
501                 fibptr->callback = callback;
502                 fibptr->callback_data = callback_data;
503         }
504         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
505         list_add_tail(&fibptr->queue, &q->pendingq);
506         q->numpending++;
507
508         fibptr->done = 0;
509         fibptr->flags = 0;
510
511         if(aac_insert_entry(dev, index, qid, (nointr & aac_config.irq_mod)) < 0)
512                 return -EWOULDBLOCK;
513         /*
514          *      If the caller wanted us to wait for response wait now. 
515          */
516     
517         if (wait) {
518                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
519                 down(&fibptr->event_wait);
520                 if(fibptr->done == 0)
521                         BUG();
522                         
523                 if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
524                         return -ETIMEDOUT;
525                 else
526                         return 0;
527         }
528         /*
529          *      If the user does not want a response than return success otherwise
530          *      return pending
531          */
532         if (reply)
533                 return -EINPROGRESS;
534         else
535                 return 0;
536 }
537
538 /** 
539  *      aac_consumer_get        -       get the top of the queue
540  *      @dev: Adapter
541  *      @q: Queue
542  *      @entry: Return entry
543  *
544  *      Will return a pointer to the entry on the top of the queue requested that
545  *      we are a consumer of, and return the address of the queue entry. It does
546  *      not change the state of the queue. 
547  */
548
549 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
550 {
551         u32 index;
552         int status;
553         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
554                 status = 0;
555         } else {
556                 /*
557                  *      The consumer index must be wrapped if we have reached
558                  *      the end of the queue, else we just use the entry
559                  *      pointed to by the header index
560                  */
561                 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 
562                         index = 0;              
563                 else
564                         index = le32_to_cpu(*q->headers.consumer);
565                 *entry = q->base + index;
566                 status = 1;
567         }
568         return(status);
569 }
570
571 int aac_consumer_avail(struct aac_dev *dev, struct aac_queue * q)
572 {
573         return (le32_to_cpu(*q->headers.producer) != le32_to_cpu(*q->headers.consumer));
574 }
575
576
577 /**
578  *      aac_consumer_free       -       free consumer entry
579  *      @dev: Adapter
580  *      @q: Queue
581  *      @qid: Queue ident
582  *
583  *      Frees up the current top of the queue we are a consumer of. If the
584  *      queue was full notify the producer that the queue is no longer full.
585  */
586
587 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
588 {
589         int wasfull = 0;
590         u32 notify;
591
592         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
593                 wasfull = 1;
594         
595         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
596                 *q->headers.consumer = cpu_to_le32(1);
597         else
598                 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
599         
600         if (wasfull) {
601                 switch (qid) {
602
603                 case HostNormCmdQueue:
604                         notify = HostNormCmdNotFull;
605                         break;
606                 case HostHighCmdQueue:
607                         notify = HostHighCmdNotFull;
608                         break;
609                 case HostNormRespQueue:
610                         notify = HostNormRespNotFull;
611                         break;
612                 case HostHighRespQueue:
613                         notify = HostHighRespNotFull;
614                         break;
615                 default:
616                         BUG();
617                         return;
618                 }
619                 aac_adapter_notify(dev, notify);
620         }
621 }        
622
623 /**
624  *      fib_adapter_complete    -       complete adapter issued fib
625  *      @fibptr: fib to complete
626  *      @size: size of fib
627  *
628  *      Will do all necessary work to complete a FIB that was sent from
629  *      the adapter.
630  */
631
632 int fib_adapter_complete(struct fib * fibptr, unsigned short size)
633 {
634         struct hw_fib * hw_fib = fibptr->hw_fib;
635         struct aac_dev * dev = fibptr->dev;
636         unsigned long nointr = 0;
637         if (le32_to_cpu(hw_fib->header.XferState) == 0)
638                 return 0;
639         /*
640          *      If we plan to do anything check the structure type first.
641          */ 
642         if ( hw_fib->header.StructType != FIB_MAGIC ) {
643                 return -EINVAL;
644         }
645         /*
646          *      This block handles the case where the adapter had sent us a
647          *      command and we have finished processing the command. We
648          *      call completeFib when we are done processing the command 
649          *      and want to send a response back to the adapter. This will 
650          *      send the completed cdb to the adapter.
651          */
652         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
653                 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
654                 if (hw_fib->header.XferState & cpu_to_le32(HighPriority)) {
655                         u32 index;
656                         if (size) 
657                         {
658                                 size += sizeof(struct aac_fibhdr);
659                                 if (size > le16_to_cpu(hw_fib->header.SenderSize))
660                                         return -EMSGSIZE;
661                                 hw_fib->header.Size = cpu_to_le16(size);
662                         }
663                         if(aac_queue_get(dev, &index, AdapHighRespQueue, hw_fib, 1, NULL, &nointr) < 0) {
664                                 return -EWOULDBLOCK;
665                         }
666                         if (aac_insert_entry(dev, index, AdapHighRespQueue,  (nointr & (int)aac_config.irq_mod)) != 0) {
667                         }
668                 }
669                 else if (hw_fib->header.XferState & NormalPriority) 
670                 {
671                         u32 index;
672
673                         if (size) {
674                                 size += sizeof(struct aac_fibhdr);
675                                 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 
676                                         return -EMSGSIZE;
677                                 hw_fib->header.Size = cpu_to_le16(size);
678                         }
679                         if (aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr) < 0) 
680                                 return -EWOULDBLOCK;
681                         if (aac_insert_entry(dev, index, AdapNormRespQueue, 
682                                 (nointr & (int)aac_config.irq_mod)) != 0) 
683                         {
684                         }
685                 }
686         }
687         else 
688         {
689                 printk(KERN_WARNING "fib_adapter_complete: Unknown xferstate detected.\n");
690                 BUG();
691         }   
692         return 0;
693 }
694
695 /**
696  *      fib_complete    -       fib completion handler
697  *      @fib: FIB to complete
698  *
699  *      Will do all necessary work to complete a FIB.
700  */
701  
702 int fib_complete(struct fib * fibptr)
703 {
704         struct hw_fib * hw_fib = fibptr->hw_fib;
705
706         /*
707          *      Check for a fib which has already been completed
708          */
709
710         if (hw_fib->header.XferState == cpu_to_le32(0))
711                 return 0;
712         /*
713          *      If we plan to do anything check the structure type first.
714          */ 
715
716         if (hw_fib->header.StructType != FIB_MAGIC)
717                 return -EINVAL;
718         /*
719          *      This block completes a cdb which orginated on the host and we 
720          *      just need to deallocate the cdb or reinit it. At this point the
721          *      command is complete that we had sent to the adapter and this
722          *      cdb could be reused.
723          */
724         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
725                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
726         {
727                 fib_dealloc(fibptr);
728         }
729         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
730         {
731                 /*
732                  *      This handles the case when the host has aborted the I/O
733                  *      to the adapter because the adapter is not responding
734                  */
735                 fib_dealloc(fibptr);
736         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
737                 fib_dealloc(fibptr);
738         } else {
739                 BUG();
740         }   
741         return 0;
742 }
743
744 /**
745  *      aac_printf      -       handle printf from firmware
746  *      @dev: Adapter
747  *      @val: Message info
748  *
749  *      Print a message passed to us by the controller firmware on the
750  *      Adaptec board
751  */
752
753 void aac_printf(struct aac_dev *dev, u32 val)
754 {
755         int length = val & 0xffff;
756         int level = (val >> 16) & 0xffff;
757         char *cp = dev->printfbuf;
758         
759         /*
760          *      The size of the printfbuf is set in port.c
761          *      There is no variable or define for it
762          */
763         if (length > 255)
764                 length = 255;
765         if (cp[length] != 0)
766                 cp[length] = 0;
767         if (level == LOG_HIGH_ERROR)
768                 printk(KERN_WARNING "aacraid:%s", cp);
769         else
770                 printk(KERN_INFO "aacraid:%s", cp);
771         memset(cp, 0,  256);
772 }
773
774
775 /**
776  *      aac_handle_aif          -       Handle a message from the firmware
777  *      @dev: Which adapter this fib is from
778  *      @fibptr: Pointer to fibptr from adapter
779  *
780  *      This routine handles a driver notify fib from the adapter and
781  *      dispatches it to the appropriate routine for handling.
782  */
783
784 #define CONTAINER_TO_BUS(cont)          (0)
785 #define CONTAINER_TO_TARGET(cont)       ((cont))
786 #define CONTAINER_TO_LUN(cont)          (0)
787
788 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
789 {
790         struct hw_fib * hw_fib = fibptr->hw_fib;
791         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
792         int busy;
793         u32 container;
794
795         /* Sniff for container changes */
796         dprintk ((KERN_INFO "AifCmdDriverNotify=%x\n", le32_to_cpu(*(u32 *)aifcmd->data)));
797         switch (le32_to_cpu(*(u32 *)aifcmd->data)) {
798         case AifDenMorphComplete:
799         case AifDenVolumeExtendComplete:
800         case AifEnContainerChange: /* Not really a driver notify Event */
801
802                 busy = 0;
803                 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
804                 dprintk ((KERN_INFO "container=%d(%d,%d,%d,%d) ",
805                   container,
806                   (dev && dev->scsi_host_ptr)
807                     ? dev->scsi_host_ptr->host_no
808                     : -1,
809                   CONTAINER_TO_BUS(container),
810                   CONTAINER_TO_TARGET(container),
811                   CONTAINER_TO_LUN(container)));
812
813                 /*
814                  *      Find the Scsi_Device associated with the SCSI address,
815                  * and mark it as changed, invalidating the cache. This deals
816                  * with changes to existing device IDs.
817                  */
818
819                 if ((dev != (struct aac_dev *)NULL)
820                  && (dev->scsi_host_ptr != (struct Scsi_Host *)NULL)) {
821                         Scsi_Device * device;
822
823                         for (device = dev->scsi_host_ptr->host_queue;
824                           device != (Scsi_Device *)NULL;
825                           device = device->next) {
826                                 dprintk((KERN_INFO
827                                   "aifd: device (%d,%d,%d,%d)?\n",
828                                   dev->scsi_host_ptr->host_no,
829                                   device->channel,
830                                   device->id,
831                                   device->lun));
832                                 if ((device->channel == CONTAINER_TO_BUS(container))
833                                  && (device->id == CONTAINER_TO_TARGET(container))
834                                  && (device->lun == CONTAINER_TO_LUN(container))) {
835                                         busy |= (device->access_count != 0);
836                                         if (busy == 0) {
837                                                 device->removable = TRUE;
838                                         }
839                                 }
840                         }
841                 }
842                 dprintk (("busy=%d\n", busy));
843
844                 /*
845                  * if (busy == 0) {
846                  *      scan_scsis(dev->scsi_host_ptr, 1,
847                  *        CONTAINER_TO_BUS(container),
848                  *        CONTAINER_TO_TARGET(container),
849                  *        CONTAINER_TO_LUN(container));
850                  * }
851                  * is not exported as accessible, so we need to go around it
852                  * another way. So, we look for the "proc/scsi/scsi" entry in
853                  * the proc filesystem (using proc_scsi as a shortcut) and send
854                  * it a message. This deals with new devices that have
855                  * appeared. If the device has gone offline, scan_scsis will
856                  * also discover this, but we do not want the device to
857                  * go away. We need to check the access_count for the
858                  * device since we are not wanting the devices to go away.
859                  */
860                 if ((busy == 0)
861                  && (proc_scsi != (struct proc_dir_entry *)NULL)) {
862                         struct proc_dir_entry * entry;
863
864                         dprintk((KERN_INFO "proc_scsi=%p ", proc_scsi));
865                         for (entry = proc_scsi->subdir;
866                           entry != (struct proc_dir_entry *)NULL;
867                           entry = entry->next) {
868                                 dprintk(("\"%.*s\"[%d]=%x ", entry->namelen,
869                                   entry->name, entry->namelen, entry->low_ino));
870                                 if ((entry->low_ino != 0)
871                                  && (entry->namelen == 4)
872                                  && (memcmp ("scsi", entry->name, 4) == 0)) {
873                                         dprintk(("%p->write_proc=%p ", entry, entry->write_proc));
874                                         if (entry->write_proc != (int (*)(struct file *, const char *, unsigned long, void *))NULL) {
875                                                 char buffer[80];
876                                                 int length;
877                                                 mm_segment_t fs;
878
879                                                 sprintf (buffer,
880                                                   "scsi add-single-device %d %d %d %d\n",
881                                                   dev->scsi_host_ptr->host_no,
882                                                   CONTAINER_TO_BUS(container),
883                                                   CONTAINER_TO_TARGET(container),
884                                                   CONTAINER_TO_LUN(container));
885                                                 length = strlen (buffer);
886                                                 dprintk((KERN_INFO
887                                                   "echo %.*s > /proc/scsi/scsi\n",
888                                                   length-1,
889                                                   buffer));
890                                                 fs = get_fs();
891                                                 set_fs(get_ds());
892                                                 length = entry->write_proc(
893                                                   NULL, buffer, length, NULL);
894                                                 set_fs(fs);
895                                                 dprintk((KERN_INFO
896                                                   "returns %d\n", length));
897                                         }
898                                         break;
899                                 }
900                         }
901                 }
902         }
903 }
904
905 /**
906  *      aac_command_thread      -       command processing thread
907  *      @dev: Adapter to monitor
908  *
909  *      Waits on the commandready event in it's queue. When the event gets set
910  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
911  *      until the queue is empty. When the queue is empty it will wait for
912  *      more FIBs.
913  */
914  
915 int aac_command_thread(struct aac_dev * dev)
916 {
917         struct hw_fib *hw_fib, *hw_newfib;
918         struct fib *fib, *newfib;
919         struct aac_queue_block *queues = dev->queues;
920         struct aac_fib_context *fibctx;
921         unsigned long flags;
922         DECLARE_WAITQUEUE(wait, current);
923
924         /*
925          *      We can only have one thread per adapter for AIF's.
926          */
927         if (dev->aif_thread)
928                 return -EINVAL;
929         /*
930          *      Set up the name that will appear in 'ps'
931          *      stored in  task_struct.comm[16].
932          */
933         sprintf(current->comm, "aacraid");
934         daemonize();
935         /*
936          *      Let the DPC know it has a place to send the AIF's to.
937          */
938         dev->aif_thread = 1;
939         add_wait_queue(&queues->queue[HostNormCmdQueue].cmdready, &wait);
940         set_current_state(TASK_INTERRUPTIBLE);
941         dprintk ((KERN_INFO "aac_command_thread start\n"));
942         while(1) 
943         {
944                 spin_lock_irqsave(queues->queue[HostNormCmdQueue].lock, flags);
945                 while(!list_empty(&(queues->queue[HostNormCmdQueue].cmdq))) {
946                         struct list_head *entry;
947                         struct aac_aifcmd * aifcmd;
948
949                         set_current_state(TASK_RUNNING);
950
951                         entry = queues->queue[HostNormCmdQueue].cmdq.next;
952                         list_del(entry);
953         
954                         spin_unlock_irqrestore(queues->queue[HostNormCmdQueue].lock, flags);
955                         fib = list_entry(entry, struct fib, fiblink);
956                         /*
957                          *      We will process the FIB here or pass it to a 
958                          *      worker thread that is TBD. We Really can't 
959                          *      do anything at this point since we don't have
960                          *      anything defined for this thread to do.
961                          */
962                         hw_fib = fib->hw_fib;
963                         
964                         memset(fib, 0, sizeof(struct fib));
965                         fib->type = FSAFS_NTC_FIB_CONTEXT;
966                         fib->size = sizeof( struct fib );
967                         fib->hw_fib = hw_fib;
968                         fib->data = hw_fib->data;
969                         fib->dev = dev;
970                         /*
971                          *      We only handle AifRequest fibs from the adapter.
972                          */
973                         aifcmd = (struct aac_aifcmd *) hw_fib->data;
974                         if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
975                                 /* Handle Driver Notify Events */
976                                 aac_handle_aif(dev, fib);
977                                 *(u32 *)hw_fib->data = cpu_to_le32(ST_OK);
978                                 fib_adapter_complete(fib, sizeof(u32));
979                         } else {
980                                 struct list_head *entry;
981                                 /* The u32 here is important and intended. We are using
982                                    32bit wrapping time to fit the adapter field */
983                                    
984                                 u32 time_now, time_last;
985                                 unsigned long flagv;
986                                 
987                                 /* Sniff events */
988                                 if (aifcmd->command == cpu_to_le32(AifCmdEventNotify))
989                                         aac_handle_aif(dev, fib);
990
991                                 time_now = jiffies/HZ;
992
993                                 spin_lock_irqsave(&dev->fib_lock, flagv);
994                                 entry = dev->fib_list.next;
995                                 /*
996                                  * For each Context that is on the 
997                                  * fibctxList, make a copy of the
998                                  * fib, and then set the event to wake up the
999                                  * thread that is waiting for it.
1000                                  */
1001                                 while (entry != &dev->fib_list) {
1002                                         /*
1003                                          * Extract the fibctx
1004                                          */
1005                                         fibctx = list_entry(entry, struct aac_fib_context, next);
1006                                         /*
1007                                          * Check if the queue is getting
1008                                          * backlogged
1009                                          */
1010                                         if (fibctx->count > 20)
1011                                         {
1012                                                 /*
1013                                                  * It's *not* jiffies folks,
1014                                                  * but jiffies / HZ, so do not
1015                                                  * panic ...
1016                                                  */
1017                                                 time_last = fibctx->jiffies;
1018                                                 /*
1019                                                  * Has it been > 2 minutes 
1020                                                  * since the last read off
1021                                                  * the queue?
1022                                                  */
1023                                                 if ((time_now - time_last) > 120) {
1024                                                         entry = entry->next;
1025                                                         aac_close_fib_context(dev, fibctx);
1026                                                         continue;
1027                                                 }
1028                                         }
1029                                         /*
1030                                          * Warning: no sleep allowed while
1031                                          * holding spinlock
1032                                          */
1033                                         hw_newfib = kmalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1034                                         newfib = kmalloc(sizeof(struct fib), GFP_ATOMIC);
1035                                         if (newfib && hw_newfib) {
1036                                                 /*
1037                                                  * Make the copy of the FIB
1038                                                  * FIXME: check if we need to fix other fields up
1039                                                  */
1040                                                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1041                                                 memcpy(newfib, fib, sizeof(struct fib));
1042                                                 newfib->hw_fib = hw_newfib;
1043                                                 /*
1044                                                  * Put the FIB onto the
1045                                                  * fibctx's fibs
1046                                                  */
1047                                                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1048                                                 fibctx->count++;
1049                                                 /* 
1050                                                  * Set the event to wake up the
1051                                                  * thread that will waiting.
1052                                                  */
1053                                                 up(&fibctx->wait_sem);
1054                                         } else {
1055                                                 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1056                                                 if(newfib)
1057                                                         kfree(newfib);
1058                                                 if(hw_newfib)
1059                                                         kfree(hw_newfib);
1060                                         }
1061                                         entry = entry->next;
1062                                 }
1063                                 /*
1064                                  *      Set the status of this FIB
1065                                  */
1066                                 *(u32 *)hw_fib->data = cpu_to_le32(ST_OK);
1067                                 fib_adapter_complete(fib, sizeof(u32));
1068                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1069                         }
1070                         spin_lock_irqsave(queues->queue[HostNormCmdQueue].lock, flags);
1071                         kfree(fib);
1072                 }
1073                 /*
1074                  *      There are no more AIF's
1075                  */
1076                 spin_unlock_irqrestore(queues->queue[HostNormCmdQueue].lock, flags);
1077                 schedule();
1078
1079                 if(signal_pending(current))
1080                         break;
1081                 set_current_state(TASK_INTERRUPTIBLE);
1082         }
1083         remove_wait_queue(&queues->queue[HostNormCmdQueue].cmdready, &wait);
1084         dev->aif_thread = 0;
1085         complete_and_exit(&dev->aif_completion, 0);
1086 }